
Sybase® SQL Server™
Performance and Tuning Guide

Sybase SQL Server Release 11.0.x

Document ID: 32645-01-1100-03

Last Revised: February 7, 1996

Principal author: Karen Paulsell

Contributing authors: Server Publications Group, Learning Products Group, and Product Performance Group

Document ID: 32645-01-1100

This publication pertains to Sybase SQL Server Release 11.0.x of the Sybase
database management software and to any subsequent release until otherwise
indicated in new editions or technical notes. Information in this document is
subject to change without notice. The software described herein is furnished under
a license agreement, and it may be used or copied only in accordance with the
terms of that agreement.

Document Orders

To order additional documents, U.S. and Canadian customers should call
Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer
Fulfillment via the above fax number. All other international customers should
contact their Sybase subsidiary or local distributor.

Upgrades are provided only at regularly scheduled software release dates.

Copyright © 1989–1996 by Sybase, Inc. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any
form or by any means, electronic, mechanical, manual, optical, or otherwise,
without the prior written permission of Sybase, Inc.

Sybase Trademarks

APT-FORMS, Data Workbench, DBA Companion, Deft, GainExposure, Gain
Momentum, Navigation Server, PowerBuilder, Powersoft, Replication Server,
S-Designor, SQL Advantage, SQL Debug, SQL SMART, SQL Solutions, SQR,
SYBASE, the Sybase logo, Transact-SQL, and VQL are registered trademarks of
Sybase, Inc. ADA Workbench, AnswerBase, Application Manager, APT-Build,
APT-Edit, APT-Execute, APT-Library, APT-Translator, APT Workbench, Backup
Server, Bit-Wise, Client-Library, Configurator, Connection Manager, Database
Analyzer, DBA Companion Application Manager, DBA Companion Resource
Manager, DB-Library, Deft Analyst, Deft Designer, Deft Educational, Deft
Professional, Deft Trial, Developers Workbench, DirectCONNECT, Easy SQR,
Embedded SQL, EMS, Enterprise Builder, Enterprise Client/Server, Enterprise
CONNECT, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work
Architecture, Enterprise Work Designer, Enterprise Work Modeler, EWA,
ExElerator, Gain Interplay, Gateway Manager, InfoMaker, Interactive Quality
Accelerator, Intermedia Server, IQ Accelerator, Maintenance Express, MAP, MDI,
MDI Access Server, MDI Database Gateway, MethodSet, Movedb, Navigation
Server Manager, Net-Gateway, Net-Library, New Media Studio, ObjectCONNECT,
OmniCONNECT, OmniSQL Access Module, OmniSQL Gateway, OmniSQL
Server, OmniSQL Toolkit, Open Client, Open Client CONNECT, Open

Client/Server, Open Client/Server Interfaces, Open Gateway, Open Server, Open
Server CONNECT, Open Solutions, PC APT-Execute, PC DB-Net, PC Net Library,
Powersoft Portfolio, Powersoft Professional, Replication Agent, Replication
Driver, Replication Server Manager, Report-Execute, Report Workbench, Resource
Manager, RW-DisplayLib, RW-Library, SAFE, SDF, Secure SQL Server, Secure SQL
Toolset, SKILS, SQL Anywhere, SQL Code Checker, SQL Edit, SQL Edit/TPU, SQL
Server, SQL Server/CFT, SQL Server/DBM, SQL Server Manager, SQL Server
Monitor, SQL Station, SQL Toolset, SQR Developers Kit, SQR Execute, SQR
Toolkit, SQR Workbench, Sybase Client/Server Interfaces, Sybase Gateways,
Sybase Intermedia, Sybase Interplay, Sybase IQ, Sybase MPP, Sybase SQL Desktop,
Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program, Sybase
Virtual Server Architecture, Sybase User Workbench, SyBooks, System 10, System
11, the System XI logo, Tabular Data Stream, Warehouse WORKS, Watcom SQL,
web.sql, WebSights, WorkGroup SQL Server, XA-Library, and XA-Server are
trademarks of Sybase, Inc.

All other company and product names used herein may be trademarks or
registered trademarks of their respective companies.

Restricted Rights

Use, duplication, or disclosure by the government is subject to the restrictions set
forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013 for the DOD and as set forth
in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., 6475 Christie Avenue, Emeryville, CA 94608.

SQL Server Performance and Tuning Guide v

Table of Contents

About This Book
Audience . xxxv
How to Use This Book . xxxv
Related Documents . xxxvi
Conventions . xxxvii

Formatting SQL Statements . xxxvii
SQL Syntax Conventions. xxxviii

Case . xxxix
Obligatory Options {You Must Choose At Least One} xxxix
Optional Options [You Don’t Have to Choose Any]. xxxix
Ellipsis: Do It Again (and Again)... . xl
Expressions . xl

Examples . xli
If You Need Help . xli

1. Introduction to Performance Analysis
What Is “Good Performance”? . 1-1

Response Time . 1-1
Throughput . 1-1
Designing for Performance . 1-1

What Is Tuning? . 1-2
Tuning Levels . 1-2

Application Layer . 1-3
Database Layer . 1-4
SQL Server Layer . 1-4
Devices Layer . 1-5
Network Layer . 1-5
Hardware Layer . 1-6
Operating System Layer . 1-6

Know the System Limits . 1-7
Know Your Tuning Goals . 1-7
Steps in Performance Analysis . 1-7

Using sp_sysmon to Monitor Performance . 1-8

vi Table of Contents

Sybase SQL Server Release 11.0.x

2. Database Design and Denormalizing for Performance
How Design Is Related to Performance . 2-1

Database Design . 2-1
Physical Database Design for SQL Server. 2-2

Normalization . 2-3
Levels of Normalization . 2-3
Benefits of Normalization . 2-4
First Normal Form . 2-4
Second Normal Form . 2-5
Third Normal Form . 2-6

Denormalizing for Performance . 2-8
Risks of Denormalization . 2-8

Disadvantages of Denormalization . 2-9
Performance Advantages of Denormalization 2-9

Denormalization Input . 2-10
Denormalization Techniques . 2-10

Adding Redundant Columns. 2-11
Adding Derived Columns . 2-11
Collapsing Tables . 2-12
Duplicating Tables . 2-13

Splitting Tables . 2-14
Horizontal Splitting . 2-14
Vertical Splitting . 2-15

Managing Denormalized Data . 2-16
Using Triggers to Manage Denormalized Data . 2-17
Using Application Logic to Manage Denormalized Data. 2-17
Batch Reconciliation . 2-18

3. Data Storage
Performance and Object Storage. 3-1

Major Performance Gains Through Query Optimization. 3-1
Query Processing and Page Reads . 3-2
SQL Server Data Pages . 3-3

Row Density on Data Pages . 3-4
Extents . 3-4
Linked Data Pages . 3-5
Text and Image Pages. 3-6

Additional Page Types. 3-7
Global Allocation Map (GAM) Pages . 3-7
Allocation Pages . 3-8

SQL Server Performance and Tuning Guide vii

Sybase SQL Server Release 11.0.x

Object Allocation Map (OAM) Pages . 3-8
Why the Range? . 3-8

Relationships Between Objects, OAM Pages, and Allocation Pages. . . . 3-9
Heaps of Data: Tables Without Clustered Indexes . 3-10

Select Operations on Heaps . 3-11
Inserting Data into a Heap . 3-11
Deleting Data from a Heap . 3-13
Update Operations on Heaps . 3-13

How SQL Server Performs I/O for Heap Operations . 3-14
Sequential Prefetch, or Large I/O . 3-14
Caches and Objects Bindings . 3-15
Heaps, I/O, and Cache Strategies . 3-15

Overview of Cache Strategies . 3-15
Select Operations and Caching. 3-17
Data Modification and Caching . 3-17

Caching and Inserts on Heaps . 3-18
Caching and Update and Delete Operations on Heaps 3-18

Heaps: Pros and Cons. 3-19
Guidelines for Using Heaps . 3-19

Maintaining Heaps. 3-19
Methods for Maintaining Heaps . 3-20
Reclaiming Space by Creating a Clustered Index 3-20
Reclaiming Space Using bcp . 3-20

The Transaction Log: A Special Heap Table . 3-20

4. How Indexes Work
Performance and Indexes . 4-1
From Heaps of Pages to Fast Performance . 4-1

What Are Indexes? . 4-1
Types of Indexes . 4-2

Index Pages . 4-2
Root Level . 4-3
Leaf Level . 4-3
Intermediate Level . 4-3

Clustered Indexes . 4-4
Clustered Indexes and Select Operations . 4-5
Clustered Indexes and Insert Operations . 4-7
Page Splitting on Full Data Pages . 4-7

Exceptions to Page Splitting . 4-9
Page Splitting on Index Pages. 4-9

viii Table of Contents

Sybase SQL Server Release 11.0.x

Performance Impacts of Page Splitting . 4-9
Overflow Pages . 4-10
Clustered Indexes and Delete Operations. 4-10

Deleting the Last Row on a Page . 4-11
Index Page Merges. 4-13

Nonclustered Indexes . 4-13
Leaf Pages Revisited. 4-14
Row IDs and the Offset Table . 4-14
Nonclustered Index Structure. 4-16
Nonclustered Indexes and Select Operations. 4-17
Nonclustered Index Performance. 4-18
Nonclustered Indexes and Insert Operations. 4-19
Nonclustered Indexes and Delete Operations . 4-20

Index Covering . 4-21
Matching Index Scans . 4-21
Nonmatching Index Scans. 4-22

Indexes and Caching . 4-23
Using Separate Caches for Data and Index Pages 4-25
Index Trips Through the Cache . 4-26

5. Estimating the Size of Tables and Indexes
Importance of Sizing . 5-1

Effects of Data Modifications on Object Sizes. 5-1
OAM Pages and Size Statistics . 5-2

Using sp_spaceused to Display Object Size . 5-3
Advantages of sp_spaceused . 5-4
Disadvantages of sp_spaceused . 5-5

Using dbcc to Display Object Size . 5-5
Advantages of dbcc . 5-7
Disadvantages of dbcc . 5-8

Using sp_estspace to Estimate Object Size . 5-8
Advantages of sp_estspace . 5-9
Disadvantages of sp_estspace . 5-10

Using Formulas to Estimate Object Size . 5-10
Factors That Can Change Storage Size . 5-10
Storage Sizes for Datatypes . 5-11
Calculating the Size of Tables and Clustered Indexes 5-12

Step 1: Calculate the Data Row Size . 5-13
Step 2: Compute the Number of Data Pages 5-14
Step 3: Compute the Size of Clustered Index Rows 5-14
Step 4: Compute the Number of Clustered Index Pages 5-15

SQL Server Performance and Tuning Guide ix

Sybase SQL Server Release 11.0.x

Step 5: Compute the Total Number of Index Pages 5-15
Step 6: Calculate Allocation Overhead and Total Pages. 5-15

Example: Calculating the Size of a 9,000,000-Row Table 5-16
Calculating the Data Row Size (Step 1). 5-17
Calculating the Number of Data Pages (Step 2) 5-17
Calculating the Clustered Index Row Size (Step 3). 5-17
Calculating the Number of Clustered Index Pages (Step 4). 5-17
Calculating the Total Number of Index Pages (Step 5) 5-18
Calculating the Number of OAM Pages and Total Pages (Step 6) . 5-18

Calculating the Size of Nonclustered Indexes . 5-19
Step 7: Calculate the Size of the Leaf Index Row. 5-19
Step 8: Calculate the Number of Leaf Pages in the Index. 5-19
Step 9: Calculate the Size of the Non-Leaf Rows 5-20
Step 10: Calculate the Number of Non-Leaf Pages 5-20
Step 11: Calculate the Total Number of Non-Leaf Index Pages. . . . 5-20
Step 12: Calculate Allocation Overhead and Total Pages. 5-21

Example: Calculating the Size of a Nonclustered Index 5-21
Calculate the Size of the Leaf Index Row (Step 7) 5-22
Calculate the Number of Leaf Pages (Step 8) 5-22
Calculate the Size of the Non-Leaf Rows (Step 9) 5-22
Calculate the Number of Non-Leaf Pages (Step 10) 5-22
Totals (Step 11) . 5-23
OAM Pages Needed (Step 12) . 5-23
Total Pages Needed . 5-23

Other Factors Affecting Object Size . 5-23
Effects of Setting fillfactor to 100 Percent . 5-24
Other fillfactor Values . 5-24
Distribution Pages . 5-24
Using Average Sizes for Variable Fields . 5-24

Very Small Rows . 5-26
max_rows_per_page Value . 5-26
text and image Data Pages . 5-26
Advantages of Using Formulas to Estimate Object Size 5-27
Disadvantages of Using Formulas to Estimate Object Size 5-27

6. Indexing for Performance
Introduction . 6-1
How Indexes Can Affect Performance . 6-1

Symptoms of Poor Indexing . 6-2
Underlying Problems . 6-3

Lack of Indexes Is Causing Table Scans . 6-3

x Table of Contents

Sybase SQL Server Release 11.0.x

Index Is Not Selective Enough . 6-3
Index Does Not Support Range Queries. 6-3
Too Many Indexes Slow Data Modification . 6-4
Index Entries Are Too Large . 6-4

Index Limits and Requirements . 6-5
Tools for Query Analysis and Tuning . 6-6

Using sp_sysmon to Observe the Effects of Index Tuning 6-8
Indexes and I/O Statistics . 6-8

Scan Count. 6-9
Queries Reporting Scan Count of 1 . 6-10
Queries Reporting Scan Count Greater Than 1 6-10
Queries Reporting Scan Count of 0 . 6-11

Reads and Writes . 6-12
Logical Reads, Physical Reads, and 2K I/O . 6-12
Physical Reads and Large I/O . 6-13
Reads and Writes on Worktables . 6-13
Effects of Caching on Writes . 6-13
Effects of Caching on Reads . 6-13

Estimating I/O . 6-14
Table Scans. 6-14

Evaluating the Cost of a Table Scan. 6-15
Evaluating the Cost of Index Access . 6-16

Evaluating the Cost of a Point Query . 6-17
Evaluating the Cost of a Range Query . 6-17

Range Queries with Covering Nonclustered Indexes 6-18
Range Queries with Noncovering Nonclustered Indexes 6-20

Indexes and Sorts . 6-21
Sorts and Clustered Indexes . 6-22
Sorts and Nonclustered Indexes. 6-23
Sorts When the Index Covers the Query . 6-23

Choosing Indexes . 6-24
Index Keys and Logical Keys . 6-25
Guidelines for Clustered Indexes . 6-25
Choosing Clustered Indexes . 6-25
Candidates for Nonclustered Indexes . 6-26
Other Indexing Guidelines . 6-26
Choosing Nonclustered Indexes. 6-28

Performance Price for Updates . 6-28
Choosing Composite Indexes . 6-28

User Perceptions and Covered Queries . 6-29
The Importance of Order in Composite Indexes 6-30

SQL Server Performance and Tuning Guide xi

Sybase SQL Server Release 11.0.x

Advantages of Composite Indexes . 6-31
Disadvantages of Composite Indexes . 6-31

Key Size and Index Size . 6-31
Techniques for Choosing Indexes . 6-32

Examining a Single Query. 6-32
Examining Two Queries with Different Indexing Requirements 6-33

Index Statistics . 6-35
The Distribution Table . 6-35
The Density Table . 6-37

How the Optimizer Uses the Statistics . 6-38
How the Optimizer Uses the Distribution Table 6-39
How the Optimizer Uses the Density Table . 6-39

Index Maintenance . 6-40
Monitoring Index Usage Over Time . 6-40
Dropping Indexes That Hurt Performance . 6-40
Index Statistics Maintenance. 6-40
Rebuilding Indexes. 6-41

Speeding Index Creation with sorted data . 6-42
Displaying Information About Indexes. 6-42
Tips and Tricks for Indexes . 6-43

Creating Artificial Columns . 6-44
Keeping Index Entries Short and Avoiding Overhead 6-44
Dropping and Rebuilding Indexes. 6-44

Choosing Fillfactors for Indexes . 6-44
Disadvantages of Using fillfactor. 6-45
Advantages of Using fillfactor . 6-46
Using sp_sysmon to Observe the Effects of Changing fillfactor 6-46

7. The SQL Server Query Optimizer
What Is Query Optimization? . 7-1

Symptoms of Optimization Problems . 7-1
Sources of Optimization Problems. 7-1

SQL Server’s Cost-Based Optimizer . 7-2
Steps in Query Processing . 7-3
Working with the Optimizer . 7-3
How Is “Fast” Determined? . 7-4
Query Optimization and Plans. 7-4

Diagnostic Tools for Query Optimization . 7-5
Using showplan and noexec Together . 7-6
noexec and statistics io . 7-7
Using set statistics time . 7-7

xii Table of Contents

Sybase SQL Server Release 11.0.x

Optimizer Strategies . 7-8
Search Arguments and Using Indexes. 7-8

SARGs in where Clauses. 7-9
Indexable Search Argument Syntax . 7-9
Search Argument Equivalents . 7-10
Guidelines for Creating Search Arguments . 7-11
Adding SARGs to Help the Optimizer . 7-12

Optimizing Joins . 7-13
Join Syntax . 7-13

How Joins Are Processed . 7-14
Basic Join Processing . 7-14
Choice of Inner and Outer Tables . 7-15

Saving I/O Using the Reformatting Strategy . 7-17
Index Density and Joins. 7-17
Datatype Mismatches and Joins . 7-19
Join Permutations . 7-19
Joins in Queries with More Than Four Tables . 7-19

Optimization of or clauses and in (values_list) . 7-22
or syntax . 7-22
in (values_list) Converts to or Processing . 7-22
How or Clauses Are Processed . 7-23
Locking and the OR Strategy . 7-24

Optimizing Aggregates . 7-25
Combining max and min Aggregates . 7-26

Optimizing Subqueries . 7-26
Flattening in, any, and exists Subqueries . 7-27
Flattening Expression Subqueries . 7-28
Materializing Subquery Results . 7-28

Noncorrelated Expression Subqueries . 7-28
Quantified Predicate Subqueries Containing Aggregates 7-29

Short Circuiting. 7-29
Subquery Introduced with an and Clause. 7-30
Subquery Introduced with an or Clause . 7-30

Subquery Results Caching. 7-31
Displaying Subquery Cache Information. 7-31

Optimizing Subqueries . 7-32
Update Operations . 7-32

Direct Updates . 7-33
In-Place Updates . 7-33
Cheap Direct Updates . 7-34
Expensive Direct Updates. 7-35

SQL Server Performance and Tuning Guide xiii

Sybase SQL Server Release 11.0.x

Deferred Updates . 7-37
Deferred Index Insert . 7-38
Optimizing Updates. 7-40

Indexing and Update Types . 7-41
Choosing Fixed-Length Datatypes for Direct Updates 7-42
Using max_rows_per_page to Increase Direct Updates. 7-42

Using sp_sysmon While Tuning Updates . 7-43

8. Understanding Query Plans
Diagnostic Tools for Query Optimization . 8-1

Combining showplan and noexec . 8-1
Echoing Input into Output Files. 8-2

Using showplan . 8-2
Basic showplan Messages . 8-2

Query Plan Delimiter Message. 8-3
Step Message . 8-3
Query Type Message . 8-4
“FROM TABLE” Message . 8-5

“FROM TABLE” and Referential Integrity. 8-6
“TO TABLE” Message . 8-7
Nested Iteration Message . 8-9
Update Mode Messages. 8-9

Direct Update Mode . 8-9
Deferred Mode . 8-11
“Deferred Index” and “Deferred Varcol” Messages 8-12

Using sp_sysmon While Tuning Updates . 8-12
showplan Messages for Query Clauses . 8-13

“GROUP BY” Message . 8-13
Selecting into a Worktable . 8-14
Grouped Aggregate Message . 8-15

Grouped Aggregates and group by. 8-15
compute by Message . 8-16
Ungrouped Aggregate Message . 8-17

Ungrouped Aggregates. 8-18
compute Messages . 8-18

Messages for order by and distinct . 8-20
Worktable Message for distinct . 8-20
Worktable Message for order by . 8-21

Sorting Message . 8-22
“GETSORTED” Message. 8-23

xiv Table of Contents

Sybase SQL Server Release 11.0.x

showplan Messages Describing Access Methods and Caching 8-23
Table Scan Message . 8-24
Matching Index Scans Message . 8-25
Clustered Index Message. 8-26
Index Name Message . 8-27
Scan Direction Message . 8-28
Positioning Messages . 8-28
Scanning Messages. 8-29
Index Covering Message . 8-29
Keys Message . 8-31
Dynamic Index Message . 8-31

Conditions for Using a Dynamic Index . 8-32
Reformatting Message . 8-33
Trigger “Log Scan” Message . 8-35
I/O Size Message . 8-35
Cache Strategy Message . 8-36

showplan Messages for Subqueries . 8-36
Output for Flattened or Materialized Subqueries 8-37

Flattened Queries . 8-38
Materialized Queries . 8-39

Structure of Subquery showplan Output . 8-40
Subquery Execution Message . 8-43
Nesting Level Delimiter Message . 8-43
Subquery Plan Start Delimiter . 8-43
Subquery Plan End Delimiter . 8-43
Type of Subquery . 8-43
Subquery Predicates. 8-44
Internal Subquery Aggregates . 8-45

Grouped or Ungrouped Messages. 8-45
Quantified Predicate Subqueries and the ANY Aggregate 8-45
Expression Subqueries and the ONCE Aggregate 8-47
Subqueries with distinct and the ONCE-UNIQUE Aggregate 8-48

Existence Join Message . 8-49
Subqueries That Perform Existence Tests . 8-49

9. Advanced Optimizing Techniques
What Are Advanced Optimizing Techniques? . 9-1
Specifying Optimizer Choices . 9-1
Specifying Table Order in Joins. 9-2

forceplan example . 9-3
Risks of Using forceplan . 9-6

SQL Server Performance and Tuning Guide xv

Sybase SQL Server Release 11.0.x

Things to Try Before Using forceplan . 9-6
Increasing the Number of Tables Considered by the Optimizer 9-7
Specifying an Index for a Query. 9-7

Risks of Specifying Indexes in Queries . 9-9
Things to Try Before Specifying Indexes . 9-9

Specifying I/O Size in a Query . 9-9
Index Type and Prefetching . 9-11
When prefetch Specification Is Not Followed . 9-11
set prefetch on . 9-11

Specifying the Cache Strategy. 9-12
Specifying Cache Strategy in select, delete, and update Statements. 9-13

Controlling Prefetching and Cache Strategies for Database Objects 9-13
Getting Information on Cache Strategies . 9-14

dbcc traceon 302 . 9-14
Invoking the dbcc Trace Facility . 9-14
General Tips for Tuning with This Trace Facility 9-15
Checking for Join Columns and Search Arguments 9-15
Determine How the Optimizer Estimates I/O Costs 9-16
Trace Facility Output . 9-16

Identifying the Table . 9-16
Estimating Table Size. 9-17
Identifying the where Clause. 9-17
Output for Range Queries. 9-18
Specified Indexes . 9-18

Calculating Base Cost. 9-19
Costing Indexes . 9-20
Index Statistics Used in dbcc 302 . 9-20
Evaluating Statistics for Search Clauses . 9-21

Distribution Page Value Matches . 9-21
Values Between Steps or Out of Range . 9-22

Range Query Messages . 9-23
Search Clauses with Unknown Values . 9-23

Cost Estimates and Selectivity . 9-24
Estimating Selectivity for Search Clauses . 9-25
Estimating Selectivity for Join Clauses . 9-25

xvi Table of Contents

Sybase SQL Server Release 11.0.x

10. Transact-SQL Performance Tips
Introduction . 10-1
“Greater Than” Queries . 10-1
not exists Tests . 10-1
Variables vs. Parameters in where Clauses . 10-2
Count vs. Exists . 10-4
or Clauses vs. Unions in Joins . 10-4
Aggregates . 10-5
Joins and Datatypes . 10-6

Null vs. Not Null Character and Binary Columns. 10-6
Forcing the Conversion to the Other Side of the Join 10-7

Parameters and Datatypes . 10-8

11. Locking on SQL Server
Introduction . 11-1
Overview of Locking . 11-1

Isolation Levels and Transactions. 11-2
Granularity of Locks . 11-5

Types of Locks in SQL Server . 11-6
Page Locks . 11-7
Table Locks . 11-8
Demand Locks . 11-9

Setting the Lock Promotion Thresholds . 11-9
Setting Lock Promotion Thresholds Server-Wide 11-11
Setting the Lock Promotion Threshold for a Table or Database. 11-12
Precedence of Settings . 11-12
Dropping Database and Table Settings . 11-12
Using sp_sysmon While Tuning Lock Promotion Thresholds. 11-13

How Isolation Levels Affect Locking . 11-13
Using holdlock and noholdlock. 11-15
Allowing Dirty Reads . 11-16
Preventing Nonrepeatable Reads and Phantoms 11-17

Cursors and Locking . 11-18
Using the shared Keyword . 11-19

Summary of Lock Types . 11-21
Example of Locking . 11-22
Observing Locks with sp_sysmon . 11-24
Viewing Locks with sp_lock . 11-25
Getting Information About Blocked Processes with sp_who 11-25

SQL Server Performance and Tuning Guide xvii

Sybase SQL Server Release 11.0.x

Deadlocks and Concurrency in SQL Server . 11-26
Avoiding Deadlocks . 11-27

Delaying Deadlock Checking. 11-27
Locking and Performance of SQL Server. 11-28

Using sp_sysmon While Reducing Lock Contention 11-29
Reducing Lock Contention . 11-29

Avoiding “Hot Spots” . 11-30
Decreasing the Number of Rows per Page. 11-30

Reducing Lock Contention with max_rows_per_page. 11-31
Indexes and max_rows_per_page . 11-32
select into and max_rows_per_page. 11-32
Applying max_rows_per_page to Existing Data 11-32
System Procedures Reporting max_rows_per_page 11-33

Additional Locking Guidelines . 11-33
Configuring SQL Server’s Lock Limit . 11-34

12. Cursors and Performance
How Cursors Can Affect Performance . 12-1

What Is a Cursor? . 12-1
Set-Oriented vs. Row-Oriented Programming. 12-2
Cursors: A Simple Example . 12-3

Resources Required at Each Stage . 12-3
Memory Use and Execute Cursors. 12-5

Cursor Modes: Read-Only and Update. 12-6
Read-Only vs. Update . 12-6

Index Use and Requirements for Cursors . 12-6
Comparing Performance With and Without Cursors . 12-7

Sample Stored Procedure: Without a Cursor . 12-7
Sample Stored Procedure With a Cursor. 12-8
Cursor vs. Non-Cursor Performance Comparison 12-9
Cursor vs. Non-Cursor Performance Explanation. 12-10

Locking with Read-Only Cursors . 12-10
Locking with Update Cursors . 12-12

Update Cursors: Experiment Results. 12-12
Guidelines for Using Cursors . 12-13
Optimizing Tips for Cursors . 12-13

Optimize Using Cursors . 12-14
Use union Instead of or Clauses or in Lists . 12-14
Declare the Cursor’s Intent . 12-14
Specify Column Names in the for update Clause 12-15

xviii Table of Contents

Sybase SQL Server Release 11.0.x

Use set cursor rows . 12-16
Keep Cursors Open Across Commits and Rollbacks 12-16
Open Multiple Cursors on a Single Connection. 12-16

13. Controlling Physical Data Placement
How Object Placement Can Improve Performance. 13-1

Symptoms of Poor Object Placement. 13-2
Underlying Problems . 13-2
Using sp_sysmon While Changing Data Placement 13-2

Terminology and Concepts . 13-3
Guidelines for Improving I/O Performance. 13-4

Spreading Data Across Disks to Avoid I/O Contention 13-4
Isolating Server-Wide I/O from Database I/O . 13-5

Where to Place tempdb . 13-5
Where to Place sybsecurity . 13-6

Keeping Transaction Logs on a Separate Disk . 13-6
Mirroring a Device on a Separate Disk . 13-7

Device Mirroring Performance Issues. 13-8
Why Use Serial Mode? . 13-9

Creating Objects on Segments . 13-9
Why Use Segments? . 13-10
Separating Tables and Indexes . 13-10
Splitting a Large Table Across Devices . 13-11
Moving Text Storage to a Separate Device . 13-11

Improving Insert Performance with Partitions . 13-12
Page Contention for Inserts. 13-12
How Partitions Address Page Contention . 13-13
How Partitions Address I/O Contention . 13-14

Read, Update, and Delete Performance . 13-15
Partitioning and Unpartitioning Tables . 13-15

Selecting Tables to Partition . 13-16
Restrictions . 13-16
Cursors and Partitioned Tables . 13-17

Partitioning Tables . 13-17
alter table Syntax . 13-17
Effects on System Tables . 13-19

Getting Information About Partitions . 13-19
dbcc checktable and dbcc checkdb . 13-20

Unpartitioning Tables . 13-20
Changing the Number of Partitions. 13-21
Partition Configuration Parameters. 13-21

SQL Server Performance and Tuning Guide xix

Sybase SQL Server Release 11.0.x

14. tempdb Performance Issues
What Is tempdb? . 14-1
How Can tempdb Affect Performance? . 14-1

Main Solution Areas for tempdb Performance . 14-1
Types and Use of Temporary Tables . 14-2

Truly Temporary Tables . 14-2
Regular User Tables . 14-3
Worktables . 14-3

Initial Allocation of tempdb . 14-3
Sizing tempdb . 14-4

Information for Sizing tempdb . 14-5
Sizing Formula . 14-5
Example of tempdb Sizing . 14-7

Placing tempdb . 14-7
Dropping the master Device from tempdb Segments. 14-8

Spanning Disks Leads to Poor Performance. 14-9
Binding tempdb to Its Own Cache . 14-9

Commands for Cache Binding . 14-9
Temporary Tables and Locking . 14-10
Minimizing Logging in tempdb . 14-10

Minimizing Logging with select into . 14-10
Minimizing Logging via Shorter Rows . 14-11

Optimizing Temporary Tables . 14-11
Creating Indexes on Temporary Tables . 14-13
Breaking tempdb Uses into Multiple Procedures 14-13
Creating Nested Procedures with Temporary Tables 14-14

15. Memory Use and Performance
How Memory Affects Performance . 15-1
Memory Fundamentals . 15-1
How Much Memory to Configure . 15-2
Caches on SQL Server . 15-3
The Procedure Cache . 15-4

Getting Information About the Procedure Cache Size 15-5
proc buffers . 15-5
proc headers . 15-6

Procedure Cache Sizing . 15-6
Estimating Stored Procedure Size . 15-6
Monitoring Procedure Cache Performance . 15-7
Procedure Cache Errors . 15-7

xx Table of Contents

Sybase SQL Server Release 11.0.x

The Data Cache . 15-7
Default Cache at Installation Time . 15-7
Page Aging in Data Cache. 15-8
Effect of Data Cache on Retrievals . 15-8
Effect of Data Modifications on the Cache . 15-9
Data Cache Performance . 15-10
Testing Data Cache Performance . 15-10

Cache Hit Ratio for a Single Query . 15-11
Cache Hit Ratio Information from sp_sysmon 15-11

Named Data Caches . 15-12
Named Data Caches and Performance . 15-12
Large I/Os and Performance . 15-13
Types of Queries That Can Benefit From Large I/O 15-14

Choosing the Right Mix of I/O Sizes for a Cache 15-15
Cache Replacement Strategies . 15-16
The Optimizer and Cache Choices. 15-17
Commands to Configure Named Data Caches 15-17
Commands for Tuning Query I/O Strategies and Sizes 15-18
Named Data Cache Recommendations. 15-18

Sizing Named Caches . 15-19
Cache Configuration Goals . 15-20
Development Versus Production Systems . 15-21
Gather Data, Plan, Then Implement . 15-21
Evaluating Caching Needs . 15-22
Cache Sizing for Special Objects, tempdb and Transaction Logs 15-23

Determining Cache Sizes for Special Tables or Indexes 15-23
Examining tempdb’s Cache Needs . 15-23
Examining Cache Needs for Transaction Logs 15-24
Choosing the I/O Size for the Transaction Log 15-25
Configuring for Large Log I/O Size . 15-26
Further Tuning Tips for Log Caches . 15-26

Basing Data Pool Sizes on Query Plans and I/O 15-27
Checking I/O Size for Queries. 15-27

Configuring Buffer Wash Size. 15-29
Overhead of Pool Configuration and Binding Objects . 15-29

Pool Configuration Overhead. 15-29
Cache Binding Overhead. 15-29

Maintaining Data Cache Performance for Large I/O . 15-30
Causes for High Large I/O Counts . 15-30
Using sp_sysmon to Check Large I/O Performance. 15-33
Re-Creating Indexes to Eliminate Fragmentation 15-33
Using Fillfactor for Data Cache Performance . 15-34

SQL Server Performance and Tuning Guide xxi

Sybase SQL Server Release 11.0.x

Speed of Recovery . 15-34
Tuning the Recovery Interval . 15-35
Housekeeper Task’s Effects on Recovery Time 15-35

Auditing and Performance. 15-36
Sizing the Audit Queue . 15-36
Auditing Performance Guidelines . 15-37

16. Networks and Performance
Why Study the Network? . 16-1

Potential Network-Based Performance Problems 16-1
Basic Questions About Networks and Performance 16-1
Techniques Summary. 16-2
Using sp_sysmon While Changing Network Configuration 16-2

How SQL Server Uses the Network . 16-3
Changing Network Packet Sizes . 16-3

Large Packet Sizes vs. Default-Size User Connections 16-4
Number of Packets Is Important . 16-4
Point of Diminishing Returns . 16-5
Client Commands for Larger Packet Sizes . 16-5
Evaluation Tools with SQL Server . 16-6
Evaluation Tools Outside of SQL Server . 16-7

Techniques for Reducing Network Traffic . 16-7
Server-Based Techniques for Reducing Traffic . 16-7

Using Stored Procedures to Reduce Network Traffic 16-7
Ask for Only the Information You Need . 16-8
Fill Up Packets When Using Cursors . 16-8

Large Transfers . 16-8
Network Overload . 16-9

Impact of Other Server Activities . 16-9
Login Protocol . 16-9
Single User vs. Multiple Users . 16-10

Guidelines for Improving Network Performance . 16-10
Choose the Right Packet Size for the Task. 16-10
Isolate Heavy Network Users . 16-12
Set tcp no delay on TCP Networks. 16-12
Configure Multiple Network Listeners . 16-13

xxii Table of Contents

Sybase SQL Server Release 11.0.x

17. Using CPU Resources Effectively
CPU Resources and Performance . 17-1
Task Management on SQL Server . 17-1
Measuring CPU Usage. 17-4

Single CPU Machines. 17-4
Using sp_monitor to See CPU Usage . 17-4

Using sp_sysmon . 17-5
Operating System Commands and CPU Usage 17-5

Multiple CPU Machines . 17-5
Determining When to Configure Additional Engines 17-6

Measuring CPU Usage from the Operating System 17-6
Distributing Network I/O Across All Engines . 17-7
Enabling Engine-to-CPU Affinity . 17-7
How the Housekeeper Task Improves CPU Utilization . 17-9

Side Effects of the Housekeeper Task . 17-10
Configuring the Housekeeper Task . 17-10

Changing the Percentage by Which Writes Can Increase. 17-10
Disabling the Housekeeper Task . 17-11
Allowing the Housekeeper Task to Work Continuously 17-11
Checking Housekeeper Effectiveness . 17-11

Multiprocessor Application Design Guidelines . 17-11
Multiple Indexes . 17-11
Managing Disks . 17-12
Adjusting the fillfactor for create index Commands. 17-12
Setting max_rows_per_page. 17-12
Transaction Length . 17-12
Temporary Tables . 17-13

18. Maintenance Activities and Performance
Maintenance Activities That Affect Performance . 18-1
Creating or Altering a Database. 18-1
Creating Indexes . 18-2

Configuring SQL Server to Speed Sorting . 18-2
Extent I/O Buffers . 18-3
Increasing the Number of Sort Buffers and Sort Pages. 18-4

Dumping the Database After Creating an Index 18-4
Creating a Clustered Index on Sorted Data . 18-4

Backup and Recovery . 18-5
Local Backups . 18-5
Remote Backups . 18-5

SQL Server Performance and Tuning Guide xxiii

Sybase SQL Server Release 11.0.x

Online Backups . 18-5
Using Thresholds to Prevent Running Out of Log Space 18-5
Minimizing Recovery Time. 18-6
Recovery Order . 18-6

Bulk Copy . 18-6
Batches and Bulk Copy . 18-7
Slow Bulk Copy . 18-7
Improving Bulk Copy Performance. 18-7
Replacing the Data in a Large Table. 18-7
Adding Large Amounts of Data to a Table . 18-8
Use Partitions and Multiple Copy Processes . 18-8
Impacts on Other Users . 18-8

Database Consistency Checker . 18-8

19. Monitoring SQL Server Performance with sp_sysmon
Introduction . 19-1
Invoking sp_sysmon . 19-2
Using sp_sysmon to View Performance Information . 19-2

When to Use sp_sysmon . 19-3
How to Use the Data . 19-4
Reading sp_sysmon Output . 19-5

Rows. 19-6
Columns . 19-6

Interpreting sp_sysmon Data . 19-7
Per Second and Per Transaction Data . 19-7
Percent of Total and Count Data . 19-7
Per Engine Data . 19-7
Total or Summary Data . 19-8

Sample Interval and Time Reporting . 19-8
Kernel Utilization . 19-8

Sample Output for Kernel Utilization . 19-9
Engine Busy Utilization . 19-9
CPU Yields by Engine . 19-11
Network Checks . 19-11

Non-Blocking . 19-12
Blocking . 19-12
Total Network I/O Checks . 19-12
Average Network I/Os per Check. 19-13

Disk I/O Checks . 19-13
Total Disk I/O Checks . 19-13

xxiv Table of Contents

Sybase SQL Server Release 11.0.x

Checks Returning I/O. 19-13
Average Disk I/Os Returned . 19-14

Task Management . 19-14
Sample Output for Task Management. 19-14
Connections Opened . 19-15
Task Context Switches by Engine. 19-16
Task Context Switches Due To . 19-16

Voluntary Yields . 19-16
Cache Search Misses . 19-17
System Disk Writes . 19-17
I/O Pacing. 19-17
Logical Lock Contention . 19-18
Address Lock Contention . 19-18
Log Semaphore Contention . 19-18
Group Commit Sleeps . 19-19
Last Log Page Writes . 19-20
Modify Conflicts. 19-20
I/O Device Contention . 19-20
Network Packet Received . 19-20
Network Packet Sent . 19-21
SYSINDEXES Lookup . 19-21
Other Causes. 19-22

Transaction Profile . 19-22
Sample Output for Transaction Profile . 19-22
Transaction Summary . 19-23

Committed Transactions . 19-23
Transaction Detail . 19-24

Inserts. 19-25
Updates . 19-26
Deletes . 19-27

Transaction Management . 19-27
Sample Output for Transaction Management . 19-27
ULC Flushes to Transaction Log. 19-28

By Full ULC. 19-29
By End Transaction . 19-29
By Change of Database . 19-29
By System Log Record and By Other . 19-29

ULC Log Records . 19-30
Maximum ULC Size . 19-30
ULC Semaphore Requests . 19-30
Log Semaphore Requests. 19-31

SQL Server Performance and Tuning Guide xxv

Sybase SQL Server Release 11.0.x

Transaction Log Writes . 19-32
Transaction Log Allocations . 19-32
Avg # Writes per Log Page . 19-32

Index Management . 19-32
Sample Output for Index Management. 19-33
Nonclustered Maintenance . 19-33

Inserts and Updates Requiring Maintenance to Indexes 19-34
Deletes Requiring Maintenance . 19-35
RID Updates from Clustered Split. 19-35

Page Splits . 19-36
Reducing Page Splits for Ascending-Key Inserts 19-36
Default Data Page Splitting . 19-36
Effects of Ascending Inserts . 19-38
Setting Ascending Inserts Mode for a Table. 19-38
Retries . 19-39
Deadlocks . 19-39
Empty Page Flushes. 19-39
Add Index Level. 19-39

Page Shrinks . 19-39
Lock Management . 19-40

Sample Output for Lock Management . 19-40
Lock Summary . 19-42

Total Lock Requests . 19-42
Average Lock Contention . 19-42
Deadlock Percentage . 19-42

Lock Detail. 19-42
Address Locks . 19-43
Last Page Locks on Heaps. 19-43

Deadlocks by Lock Type . 19-44
Deadlock Detection . 19-45

Deadlock Searches . 19-45
Searches Skipped . 19-45
Average Deadlocks per Search . 19-46

Lock Promotions . 19-46
Data Cache Management . 19-46

Sample Output for Data Cache Management. 19-49
Cache Statistics Summary (All Caches). 19-50

Cache Search Summary. 19-50
Cache Turnover . 19-51
Cache Strategy Summary . 19-51
Large I/O Usage. 19-52

xxvi Table of Contents

Sybase SQL Server Release 11.0.x

Large I/O Effectiveness. 19-52
Dirty Read Behavior . 19-53

Cache Management By Cache . 19-54
Spinlock Contention . 19-54
Utilization . 19-54
Cache Search, Hit, and Miss Information . 19-55
Pool Turnover . 19-56
Buffer Wash Behavior . 19-58
Cache Strategy . 19-59
Large I/O Usage. 19-60
Large I/O Detail . 19-61
Dirty Read Behavior . 19-61

Procedure Cache Management . 19-61
Sample Output for Procedure Cache Management. 19-61
Procedure Requests . 19-62
Procedure Reads from Disk. 19-62
Procedure Writes to Disk . 19-62
Procedure Removals. 19-62

Memory Management . 19-63
Sample Output for Memory Management . 19-63
Pages Allocated. 19-63
Pages Released . 19-63

Recovery Management . 19-63
Sample Output for Recovery Management . 19-63
Checkpoints. 19-64

Number of Normal Checkpoints . 19-64
Number of Free Checkpoints . 19-65
Total Checkpoints. 19-65

Average Time per Normal Checkpoint . 19-65
Average Time per Free Checkpoint . 19-65
Increasing the Housekeeper Batch Limit . 19-65

Disk I/O Management. 19-66
Sample Output for Disk I/O Management. 19-67
Maximum Outstanding I/Os . 19-68
I/Os Delayed By . 19-68

Disk I/O Structures . 19-69
Server Configuration Limit. 19-69
Engine Configuration Limit . 19-69
Operating System Limit . 19-69

Requested and Completed Disk I/Os . 19-69
Total Requested Disk I/Os . 19-70

SQL Server Performance and Tuning Guide xxvii

Sybase SQL Server Release 11.0.x

Completed Disk I/Os . 19-70
Device Activity Detail . 19-70

Reads and Writes . 19-71
Total I/Os . 19-71
Device Semaphore Granted and Waited. 19-71

Network I/O Management . 19-72
Sample Output for Network I/O Management 19-72
Total Requested Network I/Os . 19-74
Network I/Os Delayed . 19-75
Total TDS Packets Received . 19-75
Total Bytes Received. 19-75
Average Bytes Rec’d per Packet . 19-75
Total TDS Packets Sent. 19-75
Total Bytes Sent . 19-75
Average Bytes Sent per Packet . 19-75
Reducing Packet Overhead . 19-75

Glossary

 Index

xxviii Table of Contents

Sybase SQL Server Release 11.0.x

SQL Server Performance and Tuning Guide xxix

List of Figures

Figure 1-1: The SQL Server system model...1-2
Figure 2-1: Database design ...2-2
Figure 2-2: Levels of normalization ..2-3
Figure 2-3: A table that violates first normal form ...2-5
Figure 2-4: Correcting first normal form violations by creating two tables..............................2-5
Figure 2-5: A table that violates second normal form ..2-6
Figure 2-6: Correcting second normal form violations by creating two tables2-6
Figure 2-7: A table that violates Third Normal Form...2-7
Figure 2-8: Correcting Third Normal Form violations by creating two tables.........................2-7
Figure 2-9: Balancing denormalization issues...2-9
Figure 2-10: Denormalizing by adding redundant columns...2-11
Figure 2-11: Denormalizing by adding derived columns..2-12
Figure 2-12: Denormalizing by collapsing tables..2-13
Figure 2-13: Denormalizing by duplicating tables ...2-13
Figure 2-14: Horizontal and vertical partitioning of tables ...2-14
Figure 2-15: Horizontal partitioning of active and inactive data ...2-15
Figure 2-16: Vertically partitioning a table...2-16
Figure 2-17: Using triggers to maintain normalized data..2-17
Figure 2-18: Maintaining denormalized data via application logic ...2-17
Figure 2-19: Using batch reconciliation to maintain data ..2-18
Figure 3-1: A SQL Server data page..3-3
Figure 3-2: Row density..3-4
Figure 3-3: Page linkage..3-5
Figure 3-4: Text and image data storage...3-6
Figure 3-5: OAM page and allocation page pointers ...3-10
Figure 3-6: Selecting from a heap ..3-11
Figure 3-7: Inserting a row into a heap table ...3-12
Figure 3-8: Deleting rows from a heap table..3-13
Figure 3-9: LRU strategy takes a clean page from the LRU end of the cache.........................3-16
Figure 3-10: MRU strategy places pages just before the wash marker3-16
Figure 3-11: Finding a needed page in cache ..3-17
Figure 3-12: Inserts to a heap page in the data cache ...3-18
Figure 3-13: Data vs. log I/O ...3-21
Figure 4-1: A simplified index schematic...4-2
Figure 4-2: Index levels and page chains ...4-4
Figure 4-3: Clustered index on last name...4-5
Figure 4-4: Selecting a row using a clustered index ...4-6
Figure 4-5: Inserting a row into a table with a clustered index ..4-7

xxx List of Figures

Sybase SQL Server Release 11.0.x

Figure 4-6: Page splitting in a table with a clustered index...4-8
Figure 4-7: Adding an overflow page to a nonunique clustered index...................................4-10
Figure 4-8: Deleting a row from a table with a clustered index..4-11
Figure 4-9: Deleting the last row on a page (before the delete) ..4-12
Figure 4-10: Deleting the last row on a page (after the delete) ...4-13
Figure 4-11: Data page with the offset table ..4-15
Figure 4-12: Row offset table after an insert ..4-16
Figure 4-13: Nonclustered index structure ..4-17
Figure 4-14: Selecting rows using a nonclustered index..4-18
Figure 4-15: An insert with a nonclustered index...4-19
Figure 4-16: Deleting a row from a table with a nonclustered index...4-20
Figure 4-17: Matching index access does not have to read the data row4-22
Figure 4-18: A nonmatching index scan...4-23
Figure 4-19: Caching used for a point query via a nonclustered index.....................................4-24
Figure 4-20: Finding the root index page in cache..4-25
Figure 4-21: Caching with separate caches for data and log...4-25
Figure 4-22: Index page recycling in the cache..4-26
Figure 6-1: Query processing analysis tools and query processing ...6-8
Figure 6-2: Formula for computing table scan time ...6-16
Figure 6-3: Computing reads for a clustered index range query..6-17
Figure 6-4: Range query on a clustered index ...6-18
Figure 6-5: Range query with a covering nonclustered index ..6-19
Figure 6-6: Computing reads for a covering nonclustered index range query6-20
Figure 6-7: Computing reads for a nonclustered index range query.......................................6-21
Figure 6-8: A sort using a clustered index ...6-22
Figure 6-9: Sample rows for small and large index entries ...6-32
Figure 6-10: Formulas for computing number of distribution page values6-36
Figure 6-11: Building the distribution page...6-37
Figure 6-12: Table and clustered index with fillfactor set to 50 percent6-45
Figure 7-1: Query execution steps...7-2
Figure 7-2: Formula for converting ticks to milliseconds ..7-7
Figure 7-3: SARGs and index choices ...7-12
Figure 7-4: Nesting of tables during a join...7-14
Figure 7-5: Alternate join orders and page reads..7-16
Figure 7-6: Resolving or queries..7-24
Figure 7-7: In-place update ..7-34
Figure 7-8: Cheap direct update ..7-35
Figure 7-9: Expensive direct update ...7-36
Figure 7-10: Deferred index update ..7-39
Figure 8-1: Subquery showplan output structure...8-42
Figure 9-1: Extreme negative effects of using forceplan ..9-6

SQL Server Performance and Tuning Guide xxxi

Sybase SQL Server Release 11.0.x

Figure 11-1: Consistency levels in transactions...11-2
Figure 11-2: Dirty reads in transactions ...11-3
Figure 11-3: Nonrepeatable reads in transactions...11-4
Figure 11-4: Phantoms in transactions ...11-5
Figure 11-5: Lock promotion logic ..11-10
Figure 11-6: Avoiding dirty reads in transactions ..11-14
Figure 11-7: Avoiding phantoms in transactions ..11-18
Figure 11-8: Locking example between two transactions..11-22
Figure 11-9: Deadlocks in transactions...11-26
Figure 12-1: Cursor example..12-1
Figure 12-2: Cursor flowchart ..12-2
Figure 12-3: Resource use by cursor statement ...12-4
Figure 12-4: Read-only cursors and locking experiment input ..12-11
Figure 12-5: Update cursors and locking experiment input ...12-12
Figure 13-1: Physical and logical disks...13-3
Figure 13-2: Spreading I/O across disks ..13-4
Figure 13-3: Isolating database I/O from server-wide I/O...13-5
Figure 13-4: Placing log and data on separate physical disks...13-6
Figure 13-5: Disk I/O for the transaction log ..13-7
Figure 13-6: Mirroring data to separate physical disks..13-8
Figure 13-7: Impact of mirroring on write performance..13-8
Figure 13-8: Segments labeling portions of disks ...13-9
Figure 13-9: Separating a table and its nonclustered indexes ...13-11
Figure 13-10: Splitting a large table across devices with segments..13-11
Figure 13-11: Placing the text chain on a separate segment ..13-12
Figure 13-12: Page contention during inserts ..13-13
Figure 13-13: Addressing page contention with partitions ...13-14
Figure 13-14: Addressing I/O contention with partitions...13-15
Figure 14-1: tempdb default allocation ..14-4
Figure 14-2: tempdb spanning disks...14-9
Figure 14-3: Optimizing and creating temporary tables..14-12
Figure 15-1: How SQL Server uses memory..15-3
Figure 15-2: The procedure cache..15-4
Figure 15-3: Effect of increasing procedure cache size on the data cache15-5
Figure 15-4: Procedure cache size messages in the error log ..15-5
Figure 15-5: Formulas for sizing the procedure cache ...15-6
Figure 15-6: Effects of random selects on the data cache...15-9
Figure 15-7: Effects of random data modifications on the data cache15-10
Figure 15-8: Formula for computing the cache hit ratio ..15-11
Figure 15-9: Caching strategies joining a large table and a small table15-15
Figure 15-10: Checking disk I/O by database...15-23

xxxii List of Figures

Sybase SQL Server Release 11.0.x

Figure 15-11: Fragmentation on a heap table ..15-32
Figure 15-12: The audit process ...15-36
Figure 15-13: Trade-offs in auditing and performance ..15-37
Figure 16-1: Client/server communications model ...16-3
Figure 16-2: Packet sizes and performance..16-5
Figure 16-3: Using procedures and views to reduce network traffic ...16-7
Figure 16-4: Reducing network traffic by filtering data at the server..16-8
Figure 16-5: Effects of long transactions on other users...16-10
Figure 16-6: Match network packet sizes to application mix..16-11
Figure 16-7: Isolating heavy network users...16-12
Figure 16-8: Configuring multiple network ports ..16-13
Figure 17-1: SQL Server task management in the SMP environment..17-2
Figure 19-1: sp_sysmon execution algorithm..19-3
Figure 19-2: Eliminating one bottleneck reveals another ..19-5
Figure 19-3: How SQL Server spends its available CPU time ..19-10
Figure 19-4: How transactions are counted ...19-24
Figure 19-5: Clustered table before inserts...19-37
Figure 19-6: Insert causes a page split ..19-37
Figure 19-7: Another insert causes another page split ...19-37
Figure 19-8: Page splitting continues..19-37
Figure 19-9: First insert with ascending inserts mode ...19-38
Figure 19-10: Additional ascending insert causes a page allocation..19-38
Figure 19-11: Additional inserts fill the new page..19-38
Figure 19-12: Cache management categories ..19-48

SQL Server Performance and Tuning Guide xxxiii

List of Tables

Table 1: Syntax statement conventions ..xxxviii
Table 2: Types of expressions used in syntax statements ...xl
Table 5-1: sp_spaceused output...5-3
Table 5-2: dbcc commands that report space usage..5-5
Table 5-3: Storage sizes for SQL Server datatypes..5-11
Table 6-1: Tools for managing index performance ...6-6
Table 6-2: Additional tools for managing index performance..6-7
Table 6-3: Advanced tools for query tuning ..6-7
Table 6-4: Values reported by set statistics io ..6-9
Table 6-5: Composite nonclustered index ordering and performance6-30
Table 6-6: Comparing index strategies for two queries ...6-34
Table 6-7: Default density percentages...6-38
Table 6-8: Page pointers for unpartitioned tables in the sysindexes table6-43
Table 7-1: SARG equivalents..7-10
Table 7-2: Default density percentages...7-18
Table 7-3: Optimization of aggregates of indexed columns ..7-25
Table 7-4: Effects of indexing on update mode ...7-42
Table 8-1: Basic showplan messages ...8-2
Table 8-2: Showplan messages for various clauses...8-13
Table 8-3: showplan messages describing access methods ...8-23
Table 8-4: showplan messages for subqueries...8-36
Table 8-5: showplan messages for subquery predicates ..8-44
Table 8-6: Internal subquery aggregates ..8-45
Table 9-1: Index name and prefetching ..9-11
Table 9-2: Operators in dbcc traceon(302) output...9-18
Table 9-3: Base cost output ...9-19
Table 10-1: Density approximations for unknown search arguments10-3
Table 11-1: Summary of locks for insert and create index statements11-21
Table 11-2: Summary of locks for select, update and delete statements11-21
Table 12-1: Locks and memory use for isql and Client-Library client cursors12-5
Table 12-2: Sample execution times against a 5000-row table...12-9
Table 12-3: Locks held on data and index pages by cursors ...12-11
Table 12-4: Lock compatibility...12-13
Table 12-5: Effects of for update clause and shared on cursor locking..................................12-15
Table 13-1: Assigning partitions to segments ..13-18
Table 15-1: Effects of recovery interval on performance and recovery time.........................15-35
Table 16-1: Network options ..16-8

xxxiv List of Tables

Sybase SQL Server Release 11.0.x

SQL Server Performance and Tuning Guide xxxv

About This Book

Audience

This manual is intended for:

• Sybase® System Administrators

• Database designers

• Application developers

How to Use This Book

This book contains the following chapters:

Chapter 1, “Introduction to Performance Analysis,” describes the
major components to be analyzed when addressing performance.

Chapter 2, “Database Design and Denormalizing for Performance,”
provides a brief description of relational databases and good
database design.

Chapter 3, “Data Storage,” describes Sybase SQL Server™ page
types, how data is stored on pages, and how queries on heap tables
are executed.

Chapter 4, “How Indexes Work,” provides information on how
indexes are used to resolve queries.

Chapter 5, “Estimating the Size of Tables and Indexes,” describes
different methods for determining the current size of database
objects, and for estimating their future size.

Chapter 6, “Indexing for Performance,” provides guidelines and
examples for choosing indexes.

Chapter 7, “The SQL Server Query Optimizer,” describes the
operation of the SQL Server query optimizer.

Chapter 8, “Understanding Query Plans,” provides examples of
showplan messages.

Chapter 9, “Advanced Optimizing Techniques,” describes advanced
tools for tuning query performance.

Chapter 10, “Transact-SQL Performance Tips,” contains tips and
workarounds for specific types of queries.

xxxvi

Related Documents Sybase SQL Server Release 11.0.x

Chapter 11, “Locking on SQL Server,” describes locking on SQL
Server and techniques for reducing lock contention.

Chapter 12, “Cursors and Performance,” details some issues with
cursors and performance.

Chapter 13, “Controlling Physical Data Placement,” describes the
uses of segments and partitions for controlling the physical
placement of data on storage devices.

Chapter 14, “tempdb Performance Issues,” stresses the importance
of the temporary database, tempdb, and provides suggestions for
improving its performance.

Chapter 15, “Memory Use and Performance,” describes how SQL
Server uses memory for the procedure and data caches.

Chapter 16, “Networks and Performance,” describes network issues.

Chapter 17, “Using CPU Resources Effectively,” provides
information for tuning servers with multiple CPUs.

Chapter 18, “Maintenance Activities and Performance,” describes
the performance impact of maintenance activities.

Chapter 19, “Monitoring SQL Server Performance with sp_sysmon,”
describes how to use a system procedure that monitors SQL Server
performance.

Related Documents

SQL Server relational database management system documentation
is designed to satisfy both the inexperienced user’s preference for
simplicity and the experienced user’s desire for convenience and
comprehensiveness. The user’s guide and the reference manuals
address the various needs of end users, database and security
administrators, application developers, and programmers.

Other manuals you may find useful are:

• SQL Server installation and configuration guide, which describes
the installation procedures for SQL Server and the operating
system-specific system administration, security administration,
and tuning tasks.

• SQL Server Reference Manual, which contains detailed information
on all of the commands and system procedures discussed in this
manual.

SQL Server Performance and Tuning Guide xxxvii

Sybase SQL Server Release 11.0.x Conventions

• SQL Server Reference Supplement, which contains a list of the
Transact-SQL reserved words, definitions of system tables, a
description of the pubs2 sample database, a list of SQL Server
error messages, and other reference information that is common
to all the manuals.

• SQL Server Security Administration Guide explains how to use the
security features provided by SQL Server to control user access to
data. The manual includes information about how to add users to
SQL Server, how to give them controlled access to database
objects and procedures, and how to manage remote SQL Servers.

• SQL Server Security Features User’s Guide explains how to use the
security features of SQL Server.

• SQL Server System Administration Guide, which provides in-depth
information about administering servers and databases. The
manual includes instructions and guidelines for managing
physical resources and user and system databases, and
specifying character conversion, international language, and sort
order settings.

• The SQL Server utility programs manual, which documents the
Sybase utility programs such as isql and bcp, that are executed at
the operating system level.

• Transact-SQL User’s Guide, which documents Transact-SQL, the
Sybase enhanced version of the relational database language.
This manual serves as a textbook for beginning users of the
database management system.

• What’s New in Sybase SQL Server Release 11.0?, which describes the
new features in SQL Server release 11.0.

• SQL Server Monitor User’s Guide, which describes how to use a
separate Sybase product that monitors SQL Server performance
and graphically displays the results.

Conventions

Formatting SQL Statements

SQL is a free-form language. There are no rules about the number of
words you can put on a line, or where you must break a line.
However, for readability, all examples and syntax statements in this
manual are formatted so that each clause of a statement begins on a

xxxviii

Conventions Sybase SQL Server Release 11.0.x

new line. Clauses that have more than one part extend to additional
lines, which are indented.

SQL Syntax Conventions

The conventions for syntax statements in this manual are as follows:

• Syntax statements (displaying the syntax and all options for a
command) are printed like this:

sp_dropdevice [device_name]

or, for a command with more options:

selec t column_name
 from table_name
 where search_conditions

In syntax statements, keywords (commands) are in normal font
and identifiers are in lowercase: normal font for keywords,
italics for user-supplied words.

Table 1: Syntax statement conventions

Key Definition

command Command names, command option names, utility
names, utility flags, and other keywords are in
bold Courier in syntax statements, and in bold
Helvetica in paragraph text.

variable Variables, or words that stand for values that you fill
in, are in italics.

{ } Curly braces indicate that you choose at least one of
the enclosed options. Do not include braces in your
option.

[] Brackets mean choosing one or more of the enclosed
options is optional. Do not include brackets in your
option.

() Parentheses are to be typed as part of the command.

| The vertical bar means you may select only one of
the options shown.

, The comma means you may choose as many of the
options shown as you like, separating your choices
with commas to be typed as part of the command.

SQL Server Performance and Tuning Guide xxxix

Sybase SQL Server Release 11.0.x Conventions

• Examples showing the use of Transact-SQL commands are
printed like this:

select * from publishers

• Examples of output from the computer are printed like this:

pub_id pub_name city state
------ --------------------- ------------- -----
0736 New Age Books Boston MA
0877 Binnet & Hardley Washington DC
1389 Algodata Infosystems Berkeley CA

(3 rows affected)

Case

You can disregard case when you type keywords:

SELECT is the same as Select is the same as select

SQL Server’s sensitivity to the case (upper or lower) of database
objects, such as table names, and data depends on the sort order
installed on your server. Case sensitivity can be changed for single-
byte character sets by reconfiguring SQL Server’s sort order. (See the
System Administration Guide for more information.)

Obligatory Options {You Must Choose At Least One}

• Curly Braces and Vertical Bars: Choose one and only one option.

{die_on_your_feet | live_on_your_knees |
live_on_your_feet}

• Curly Braces and Commas: Choose one or more options. If you
choose more than one, separate your choices with commas.

{cash, check, credit}

Optional Options [You Don’t Have to Choose Any]

• One Item in Square Brackets: You don’t have to choose it.

[anchovies]

• Square Brackets and Vertical Bars: Choose none or only one.

[beans | rice | sweet_potatoes]

xl

Conventions Sybase SQL Server Release 11.0.x

• Square Brackets and Commas: Choose none, one, or more than
one option. If you choose more than one, separate your choices
with commas.

[extra_cheese, avocados, sour_cream]

Ellipsis: Do It Again (and Again)...

An ellipsis (...) means that you can repeat the last unit as many times
as you like. In this syntax statement, buy is a required keyword:

buy thing = price [cash | check | credit]
 [, thing = price [cash | check | credit]]...

You must buy at least one thing and give its price. You may choose a
method of payment: one of the items enclosed in square brackets.
You may also choose to buy additional things: as many of them as
you like. For each thing you buy, give its name, its price, and
(optionally) a method of payment.

Expressions

Several different types of expressions are used in SQL Server syntax
statements.

Table 2: Types of expressions used in syntax statements

Usage Definition

expression Can include constants, literals, functions, column
identifiers, variables or parameters

logical expression An expression that returns TRUE, FALSE or UNKNOWN

constant
expression

An expression that always returns the same value, such as
“5+3” or “ABCDE”

float_expr Any floating-point expression or expression that implicitly
converts to a floating value

integer_expr Any integer expression, or an expression that implicitly
converts to an integer value

numeric_expr Any numeric expression that returns a single value

char_expr Any expression that returns a single character-type value

binary_expression An expression that returns a single binary or varbinary value

SQL Server Performance and Tuning Guide xli

Sybase SQL Server Release 11.0.x Examples

Examples

Many of the examples in this manual are based on a database called
pubtune. The database schema is the same as the pubs2 database, but
the tables used in the examples have more rows: titles has 5000,
authors has 5000, and titleauthor has 6250. Different indexes are
generated to show different features for many examples, and these
indexes are described in the text.

The pubtune database is not provided. Since most of the examples
show the results of commands such as set showplan or set statistics io,
running the queries in this manual on pubs2 tables will not produce
the same I/O results, and in many cases, will not produce the same
query plans.

If You Need Help

Help with your Sybase software is available in the form of
documentation and Sybase Technical Support.

Each Sybase installation that has purchased a support contract has
one or more designated people who are authorized to contact Sybase
Technical Support. If you cannot resolve your problem using the
manuals, ask a designated person at your site to contact Sybase
Technical Support.

xlii

If You Need Help Sybase SQL Server Release 11.0.x

SQL Server Performance and Tuning Guide 1-1

1 Introduction to Performance
Analysis 1.

What Is “Good Performance”?

Performance is the measure of efficiency of an application or
multiple applications running in the same environment.
Performance is usually measured in response time and throughput.

Response Time

Response time is the time that a single task takes to complete. You
can shorten response time by:

• Reducing contention and wait times, particularly disk I/O wait
times

• Using faster components

• Reducing the amount of time the resources are needed

In some cases, SQL Server is also optimized to reduce initial response
time, that is, the time it takes to return the first row to the user. This
is especially useful in applications where a user may retrieve several
rows with a query, but then browse through them slowly with a
front-end tool.

Throughput

Throughput refers to the volume of work completed in a fixed time
period. There are two ways of thinking of throughput:

• For a single transaction, for example, 5 UpdateTitle transactions
per minute

• For the entire SQL Server, for example, 50 or 500 Server-wide
transactions per minute

Throughput is commonly measured in transactions per second (tps),
but it can also be measured per minute, per hour, per day, and so on.

Designing for Performance

Most of the gains in performance derive from good database design,
thorough query analysis, and appropriate indexing. The largest
performance gains can be realized by establishing a good database

1-2 Introduction to Performance Analysis

What Is Tuning? Sybase SQL Server Release 11.0.x

design, and by learning to work with the SQL Server query
optimizer as you develop your applications.

Other considerations, such as hardware and network analysis, can
locate performance bottlenecks in your installation.

What Is Tuning?

Tuning is optimizing performance. A system model of SQL Server
and its environment can be used to identify performance problems at
each layer.

Figure 1-1: The SQL Server system model

A major part of tuning is reducing contention for system resources.
As the number of users increases, applications contend for resources
such as the data and procedure caches, spinlocks on system
resources, and the CPU or CPUs. The probability of lock contention
on data pages also increases.

Tuning Levels

SQL Server and its environment and applications can be broken into
components, or tuning layers, in order to isolate certain components
of the system for analysis. In many cases, two or more layers must be
tuned to work optimally together.

In some cases, removing a resource bottleneck at one layer can reveal
another problem area. On a more optimistic note, resolving one

Application code
Open Client

N
et

w
or

k
in

te
rfa

ce

Response

Request
RPC

Data

Procedure

SQL compiler

Access manager

SQL executive

cache

TransactionIndexes

Data tables

System
procedures

cache

Shared memory

log

SQL Server Performance and Tuning Guide 1-3

Sybase SQL Server Release 11.0.x What Is Tuning?

problem can sometimes alleviate other problems. For example, if
physical I/O rates are high for queries, and you add more memory to
speed response time and increase your cache hit ratio, you may ease
problems with disk contention.

The tuning layers in SQL Server are:

• Applications layer – most of your performance gains come from
query tuning, based on good database design. Most of this guide
is devoted to an explanation of SQL Server internals and query
processing techniques and tools.

• Database layer – applications share resources at the database
layer, including disks, the transaction log, data cache,

• Server layer – at the server layer, there are many shared resources,
including the data and procedure caches, locks, CPUs

• Devices layer – the disk and controllers that store your data

• Network layer – the network or networks that connect users to
SQL Server

• Hardware layer – the CPU or CPUs available

• Operating system layer – ideally, SQL Server is the only major
application on a machine, and must only share CPU, memory,
and other resources with the operating system, and other Sybase
software such as the Backup Server™ or SQL Server Monitor™.

Application Layer

The majority of this guide describes tuning queries and the majority
of your efforts in maintaining high SQL Server performance will
involve tuning the queries on your server.

Issues at the application layer include the following:

• Decision support vs. online transaction processing (OLTP)
require different performance strategies

• Transaction design can reduce concurrency, since long
transactions hold locks, and reduce the access of other users to
the data

• Referential integrity requires joins for data modification

• Indexing to support selects increases time to modify data

• Auditing for security purposes can limit performance

Options at the application layer include:

1-4 Introduction to Performance Analysis

What Is Tuning? Sybase SQL Server Release 11.0.x

• Remote processing or replicated processing can move decision
support off the OLTP machine

• Using stored procedures to reduce compilation time and network
usage

• Use the minimum locking level that meets your application
needs

Database Layer

Issues at the database layer include:

• Developing a backup and recovery scheme

• Distribution of data across devices

• Auditing affects performance; audit only what you need

• Scheduling maintenance activities that can slow performance
and lock users out of tables

Options include:

• Transaction log thresholds to automate logs dumps and avoid
running out of space

• Use of thresholds for space monitoring in data segments

• Use of partitions to speed loading of data

• Object placement to avoid disk contention

• Caching for high availability of critical tables and indexes

SQL Server Layer

Issues at the SQL Server layer are:

• Application types—is the server supporting OLTP or DSS
(Decision Support) or a mix?

• Number of users to be supported can affect tuning decisions–as
the number of users increases, contention for resources can shift.

• Network loads.

• Replication Server® or other distributed processing can be an
option when the number of users and transaction rate reach high
levels.

Options include:

SQL Server Performance and Tuning Guide 1-5

Sybase SQL Server Release 11.0.x What Is Tuning?

• Tuning memory, the most critical configuration parameter and
other parameters

• Deciding on client vs. server processing—can some processing
take place at the client side?

• Configuring cache sizes and I/O sizes

• Adding multiple CPUs

• Scheduling batch jobs and reporting for off-hours

• Reconfiguring certain parameters for shifting workload patterns

• Determine whether it is possible to move DSS to another SQL
Server

Devices Layer

Issues at the devices layer include:

• Will the master device, the devices that hold the user database, or
database logs be mirrored?

• How do you distribute system databases, user databases, and
database logs across the devices?

• Are partitions needed for high insert performance on heap
tables?

Options include:

• Using more medium-sized devices and more controllers may
provide better I/O throughput than a few large devices

• Distributing databases, tables, and indexes to create even I/O
load across devices

Network Layer

Virtually all users of SQL Server access their data via the network.
Major issues with the network layer are:

• The amount of network traffic

• Network bottlenecks

• Network speed

Options include:

• Configuring packet sizes to match application needs

• Configuring subnets

1-6 Introduction to Performance Analysis

What Is Tuning? Sybase SQL Server Release 11.0.x

• Isolating heavy network uses

• Moving to higher-capacity network

• Configuring for multiple network engines

• Designing applications to limit the amount of network traffic
required

Hardware Layer

Issues at the hardware layer include:

• CPU throughput

• Disk access: controllers as well as disks

• Disk backup

• Memory usage

Some options are:

• Adding CPUs to match workload

• Configuring the housekeeper task to improve CPU utilization

• Following multiprocessor application design guidelines to
reduce contention

• Configuring multiple data caches

Operating System Layer

At the operating system layer, the major issues are:

• File systems—are they available only to SQL Server?

• Memory management—accurately estimating operating system
overhead and other program memory use

• CPU utilization—how many CPUs are available overall, and how
many are allocated to SQL Server?

Options include:

• Network interface

• Choosing between files and raw partitions

• Increasing the memory size

• Moving client operations and batch processing to other machines

• Multiple CPU utilization for SQL Server

SQL Server Performance and Tuning Guide 1-7

Sybase SQL Server Release 11.0.x Know the System Limits

Know the System Limits

There are limits to maximum performance. The physical limits of the
CPU, disk subsystems and networks impose limits. Some of these
can be overcome by purchasing more memory and faster
components. Examples are adding memory, using faster disk drives,
switching to higher bandwidth networks, and adding CPUs.

Given a set of components, any individual query has a minimum
response time. Given a set of system limitations, the physical
subsystems impose saturation points.

Know Your Tuning Goals

For many systems, a performance specification developed early in
the application life cycle sets out the expected response time for
specific types of queries and the expected throughput for the system
as a whole.

Steps in Performance Analysis

When there are performance problems, you need to determine the
sources of the problems and your goals in resolving them. The steps
for analyzing performance problems are:

1. Collect performance data to get baseline measurements. For
example, you might use one or more of the following tools:

- Benchmark tests developed in house or industry standard
third-party tests.

- sp_sysmon, a system procedure that monitors SQL Server
performance and provides statistical output describing the
behavior of your SQL Server system. See Chapter 19,
“Monitoring SQL Server Performance with sp_sysmon” of this
guide for information about how to use sp_sysmon.

- SQL Server Monitor, a separate Sybase product that provides
graphical performance and tuning tools and object-level
information on I/O and locks.

- Any other appropriate tools.

2. Analyze the data to understand the system and any performance
problems. Create and answer a list of questions to analyze your
SQL Server environment. The list might include questions such
as the following:

1-8 Introduction to Performance Analysis

Steps in Performance Analysis Sybase SQL Server Release 11.0.x

- What are the symptoms of the problem?

- What components of the system model affect the problem?

- Does the problem affect all users, or only users of certain
applications?

- Is the problem intermittent or constant?

3. Define system requirements and performance goals:

- How often is this query executed?

- What response time is required?

4. Define the SQL Server environment—know the configuration
and limitations at all layers.

5. Analyze application design—examine tables, indexes, and
transactions.

6. Formulate a hypothesis about possible causes of the
performance problem and possible solutions based on
performance data.

7. Test the hypothesis by implementing the solutions from the last
step:

- Adjust configuration parameters

- Redesign tables

- Add or redistribute memory resources

8. Use the same tests used to collect baseline data in step 1 to
determine the effects of tuning. Performance tuning is usually an
iterative process.

- If actions taken based on step 7 do not meet the performance
requirements and goals set in step 3, or if adjustments made in
one area cause new performance problems, repeat this analysis
starting with step 2. You might need to reevaluate system
requirements and performance goals.

9. If testing shows that the hypothesis was correct, implement the
solution in your development environment.

Using sp_sysmon to Monitor Performance

Use the system procedure sp_sysmon while tuning to monitor the
effects of adjustments you make.

SQL Server Performance and Tuning Guide 1-9

Sybase SQL Server Release 11.0.x Steps in Performance Analysis

Performance tuning is usually an iterative process. While specific
tuning might enhance performance in one area, it can
simultaneously diminish performance in another area. Check the
entire sp_sysmon output and make adjustments as necessary to
achieve your tuning goals.

For more information about using sp_sysmon see Chapter 19,
“Monitoring SQL Server Performance with sp_sysmon.”

SQL Server Monitor, a separate Sybase product, can pinpoint where
problems are at the object level.

1-10 Introduction to Performance Analysis

Steps in Performance Analysis Sybase SQL Server Release 11.0.x

SQL Server Performance and Tuning Guide 2-1

2 Database Design and Denormalizing
for Performance 2.

How Design Is Related to Performance

Performance and tuning are built on top of good database design.
They aren’t panaceas. If you start with a bad database design, the
information in the other chapters of this book may help you speed up
your queries a little, but good overall performance starts with good
design.

This chapter doesn’t attempt to discuss all of the material presented
in database design courses. It cannot teach you nearly as much as the
many excellent books available on relational database design. This
chapter presents some of the major design concepts and a few
additional tips to help you move from a logical database design to a
physical design on SQL Server.

Database Design

Database design is the process of moving from real-world business
models and requirements to a database model that meets these
requirements. For relational databases such as SQL Server, the
standard design creates tables in Third Normal Form.

When you translate an Entity-Relationship model, in Third Normal
Form (3NF), to a relational model:

• Relations become tables.

• Attributes become columns.

• Relationships become data references (primary and foreign key
references).

2-2 Database Design and Denormalizing for Performance

How Design Is Related to Performance Sybase SQL Server Release 11.0.x

Figure 2-1: Database design

Physical Database Design for SQL Server

Based on access requirements and constraints, implement your
physical database design as follows:

• Denormalize where appropriate

• Partition tables where appropriate

• Group tables into databases where appropriate

• Determine use of segments

DBMS
constraints

Real world
data requirements

Relational Model

(Third Normal Form)

Entities
Relationships
Attributes

(Third Normal Form)

Data access
requirements

Tables
Columns
Indexes
Keys
Views
Referential
integrity
Triggers
Segments

Physical
implementation

SQL Server Performance and Tuning Guide 2-3

Sybase SQL Server Release 11.0.x Normalization

• Determine use of devices

• Implement referential integrity of constraints

Normalization

When a table is normalized, the non-key columns depend on the key,
the whole key, and nothing but the key.

From a relational model point of view, it is standard to have tables
that are in Third Normal Form. Normalized physical design
provides the greatest ease of maintenance, and databases in this form
are clearly understood by teams of developers.

However, a fully normalized design may not always yield the best
performance. It is recommended that you design for Third Normal
Form, and then, as performance issues arise, denormalize to solve
them.

Levels of Normalization

Each level of normalization relies on the previous level, as shown in
Figure 2-2. For example, to conform to 2NF, entities must be in 1NF.

Figure 2-2: Levels of normalization

When determining if a database is in a normal form, start with the
assumption that the relation (or table) is not normalized. Then apply
the rigor of each normal form level to it.

3NF
2NF

1NF
Not normalized

Other higher
normal forms

2-4 Database Design and Denormalizing for Performance

Normalization Sybase SQL Server Release 11.0.x

Benefits of Normalization

Normalization produces smaller tables with smaller rows:

• More rows per page (less logical I/O)

• More rows per I/O (more efficient)

• More rows fit in cache (less physical I/O)

The benefits of normalization include:

• Searching, sorting, and creating indexes are faster, since tables are
narrower, and more rows fit on a data page.

• You usually wind up with more tables. You can have more
clustered indexes (you get only one per table) so you get more
flexibility in tuning queries.

• Index searching is often faster, since indexes tend to be narrower
and shorter.

• More tables allow better use of segments to control physical
placement of data.

• You usually wind up with fewer indexes per table, so data
modification commands are faster.

• You wind up with fewer null values and less redundant data,
making your database more compact.

• Triggers execute more quickly if you are not maintaining
redundant data.

• Data modification anomalies are reduced.

• Normalization is conceptually cleaner and easier to maintain and
change as your needs change.

While fully normalized databases require more joins, joins are
generally very fast if indexes are available on the join columns. SQL
Server is optimized to keep higher levels of the index in cache, so
each join performs only one or two physical I/Os for each matching
row. The cost of finding rows already in the data cache is extremely
low.

First Normal Form

The rules for First Normal Form are:

• Every column must be atomic. It cannot be decomposed into two
or more subcolumns.

SQL Server Performance and Tuning Guide 2-5

Sybase SQL Server Release 11.0.x Normalization

• You cannot have multivalued columns or repeating groups.

• Every row and column position can have only one value.

The table in Figure 2-3 violates first normal form, since the dept_no
column contains a repeating group:

Figure 2-3: A table that violates first normal form

Normalization creates two tables and moves dept_no to the second
table:

Figure 2-4: Correcting first normal form violations by creating two tables

Second Normal Form

For a table to be in Second Normal Form, every non-key field must
depend on the entire primary key, not on part of a composite primary
key. If a database has only single-field primary keys, it is
automatically in Second Normal Form.

Employee (emp_num, emp_lname, dept__no)

Employee

emp_num emp_lname dept_no

10052 Jones A10 C66

10101 Sims D60

Repeating group

Employee (emp_num, emp_lname)

Employee

emp_num emp_lname

10052 Jones

10101 Sims

Emp_dept

emp_num dept_no

10052 A10

10052 C66

10101 D60

Emp_dept (emp_num, dept_no)

2-6 Database Design and Denormalizing for Performance

Normalization Sybase SQL Server Release 11.0.x

In the table in Figure 2-5, the primary key is a composite key on
emp_num and dept_no. But the value of dept_name depends only on
dept_no, not on the entire primary key.

Figure 2-5: A table that violates second normal form

To normalize this table, move dept_name to a second table as shown
in Figure 2-6.

Figure 2-6: Correcting second normal form violations by creating two tables

Third Normal Form

For a table to be in Third Normal Form, a non-key field cannot
depend on another non-key field. The table in Figure 2-7 violates
Third Normal Form because the mgr_lname field depends on the
mgr_emp_num field, which is not a key field.

Emp_dept

emp_num dept_no dept_name

10052 A10 accounting

10074 A10 accounting

10074 D60 development

Emp_dept (emp_num, dept_no, dept_name)
Depends on part
of primary key

Primary key

Emp_dept

emp_num dept_no

10052 A10

10074 A10

10074 D60

Emp_dept (emp_num, dept_no)

Primary key

Dept

dept_no dept_name

A10 accounting

D60 development

Dept (dept_no, dept_name)

Primary key

SQL Server Performance and Tuning Guide 2-7

Sybase SQL Server Release 11.0.x Normalization

Figure 2-7: A table that violates Third Normal Form

The solution is to split the Dept table into two tables, as shown in
Figure 2-8. In this case, the Employees table, shown in Figure 2-4
already stores this information, so removing the mgr_lname field
from Dept brings the table into Third Normal Form.

Figure 2-8: Correcting Third Normal Form violations by creating two tables

Dept

dept_no dept_name mgr_emp_num mgr_lname

A10 accounting 10073 Johnson

D60 development 10089 White

M80 marketing 10035 Dumont

Dept (dept_no, dept_name, mgr_emp_num, mgr_lname)

Primary key

Depend on
primary key

Depends on
nonkey field

Dept

dept_no dept_name mgr_emp_num

A10 accounting 10073

D60 development 10089

M80 marketing 10035

Dept (dept_no, dept_name, mgr_emp_num)

Primary key

Employee

emp_num emp_lname

10073 Johnson

10089 White

10035 Dumont

Primary key

Employee (emp_num, emp_lname)

2-8 Database Design and Denormalizing for Performance

Denormalizing for Performance Sybase SQL Server Release 11.0.x

Denormalizing for Performance

Once you have created your database in normalized form, you can
perform benchmarks and decide to back away from normalization to
improve performance for specific queries or applications.

The process of denormalizing:

• Can be done with tables or columns

• Assumes prior normalization

• Requires a thorough knowledge of how the data is being used

Good reasons for denormalizing are:

• All or nearly all of the most frequent queries require access to the
full set of joined data

• A majority of applications perform table scans when joining
tables

• Computational complexity of derived columns requires
temporary tables or excessively complex queries

Risks of Denormalization

Denormalization should be based on thorough knowledge of the
application, and it should be performed only if performance issues
indicate that it is needed. For example, the ytd_sales column in the
titles table of the pubs2 database is a denormalized column that is
maintained by a trigger on the salesdetail table. The same values can
be obtained using this query:

select title_id, sum(qty)
 from salesdetail
 group by title_id

To obtain the summary values and the document title requires a join
with the titles table:

select title, sum(qty)
 from titles t, salesdetail sd
 where t.title_id = sd.title_id
 group by title

It makes sense to denormalize this table if the query is run frequently.
But there is a price to pay: you must create an insert/update/delete
trigger on the salesdetail table to maintain the aggregate values in the
titles table. Executing the trigger and performing the changes to titles

SQL Server Performance and Tuning Guide 2-9

Sybase SQL Server Release 11.0.x Denormalizing for Performance

adds processing cost to each data modification of the qty column
value.

This situation is a good example of the tension between decision
support applications, which frequently need summaries of large
amounts of data, and transaction processing applications, which
perform discrete data modifications. Denormalization usually favors
one form of processing at a cost to others.

Figure 2-9: Balancing denormalization issues

Whatever form of denormalization you choose, it has the potential
for data integrity problems that must be carefully documented and
addressed in application design.

Disadvantages of Denormalization

Denormalization has these disadvantages:

• It usually speeds retrieval but can slow data modification.

• It is always application-specific and needs to be re-evaluated if
the application changes.

• It can increase the size of tables.

• In some instances, it simplifies coding; in others, it makes coding
more complex.

Performance Advantages of Denormalization

Denormalization can improve performance by:

• Minimizing the need for joins

• Reducing the number of foreign keys on tables

• Reducing the number of indexes, saving storage space and
reducing data modification time

update,
insert,
delete

Low number of updates +
Large number of queries =

Denormalization

select

2-10 Database Design and Denormalizing for Performance

Denormalizing for Performance Sybase SQL Server Release 11.0.x

• Precomputing aggregate values, that is, computing them at data
modification time rather than at select time

• Reducing the number of tables (in some cases)

Denormalization Input

When deciding whether to denormalize, you need to analyze the
data access requirements of the applications in your environment,
and their actual performance characteristics. Often, good indexing
and other solutions solve many performance problems.

Some of the issues to examine when considering denormalization
include:

• What are the critical transactions, and what is the expected
response time?

• How often are the transactions executed?

• What tables or columns do the critical transactions use? How
many rows do they access each time?

• What is the mix of transaction types: select, insert, update, and
delete?

• What is the usual sort order?

• What are the concurrency expectations?

• How big are the most frequently accessed tables?

• Do any processes compute summaries?

• Where is the data physically located?

Denormalization Techniques

The most prevalent denormalization techniques are:

• Adding redundant columns

• Adding derived columns

• Collapsing tables

In addition, you can duplicate or split tables to improve
performance. While these are not denormalization techniques, they
achieve the same purposes and require the same safeguards.

SQL Server Performance and Tuning Guide 2-11

Sybase SQL Server Release 11.0.x Denormalizing for Performance

Adding Redundant Columns

You can add redundant columns to eliminate frequent joins. For
example, if frequent joins are performed on the titleauthor and authors
tables in order to retrieve the author’s last name, you can add the
au_lname column to titleauthor.

Figure 2-10: Denormalizing by adding redundant columns

Adding redundant columns eliminates joins for many queries. The
problems with this solution are that it:

• Requires maintenance of new column. All changes must be made
to two tables, and possibly to many rows in one of the tables.

• Requires more disk space, since au_lname is duplicated.

Adding Derived Columns

Adding derived columns can help eliminate joins and reduce the
time needed to produce aggregate values. The total_sales column in
the titles table of the pubs2 database provides one example of a
derived column used to reduce aggregate value processing time.

The example in Figure 2-11 shows both benefits. Frequent joins are
needed between the titleauthor and titles tables to provide the total
advance for a particular book title.

title_id au_id
titleauthor

au_id au_lname
 authors

select ta.title_id, a.au_id, a.au_lname
from titleauthor ta, authors a
where ta.au_id = a.au_id

au_id au_lname
 authors

title_id au_id au_lname
titleauthor

select title_id, au_id, au_lname
from titleauthor

join columns

2-12 Database Design and Denormalizing for Performance

Denormalizing for Performance Sybase SQL Server Release 11.0.x

Figure 2-11: Denormalizing by adding derived columns

You can create and maintain a derived data column in the titles table,
eliminating both the join and the aggregate at run time. This
increases storage needs, and requires maintenance of the derived
column whenever changes are made to the titles table.

Collapsing Tables

If most users need to see the full set of joined data from two tables,
collapsing the two tables into one can improve performance by
eliminating the join.

For example, users frequently need to see the author name, author
ID, and the blurbs copy data at the same time. The solution is to
collapse the two tables into one. The data from the two tables must be
in a one-to-one relationship to collapse tables.

title_id advance
titleauthor

title_id title
 titles

select title, sum(advance)
from titleauthor ta, titles t
where ta.title_id = t.title_id
group by title_id

title_id title sum_adv
titles

select title, sum_adv
from titles

title_id advance
titleauthor

join columns

SQL Server Performance and Tuning Guide 2-13

Sybase SQL Server Release 11.0.x Denormalizing for Performance

Figure 2-12: Denormalizing by collapsing tables

Collapsing the tables eliminates the join, but loses the conceptual
separation of the data. If some users still need access to just the pairs
of data from the two tables, this access can be restored by queries that
select only the needed columns or by using views.

Duplicating Tables

If a group of users regularly needs only a subset of data, you can
duplicate the critical table subset for that group.

Figure 2-13: Denormalizing by duplicating tables

au_id au_lname

authors

au_id copy

 blurbs
select a.au_id, a.au_lname,
b.copy
from authors a, blurbs b
where a.au_id = b.au_id

au_id au_lname copy
newauthors

select * from newauthors

join columns

au_id au_lname copy
newauthors

au_id copy
 blurbs

au_id au_lname copy
newauthors

2-14 Database Design and Denormalizing for Performance

Denormalizing for Performance Sybase SQL Server Release 11.0.x

The kind of split shown in Figure 2-13 minimizes contention, but
requires that you manage redundancy and possible latency.

Splitting Tables

Sometimes, splitting normalized tables can improve performance.
You can split tables in two ways:

• Horizontally, by placing rows in two separate tables, depending
on data values in one or more columns

• Vertically, by placing the primary key and some columns in one
table, and placing other columns and the primary key in another
table.

Figure 2-14: Horizontal and vertical partitioning of tables

Splitting tables—either horizontally or vertically—adds complexity
to your applications. There usually needs to be a very good
performance reason.

Horizontal Splitting

Use horizontal splitting in the following circumstances:

• A table is large, and reducing its size reduces the number of index
pages read in a query. B-tree indexes, however, are generally very
flat, and you can add large numbers of rows to a table with small
index keys before the B-tree requires more levels. An excessive
number of index levels may be an issue with tables that have very
large keys.

Vertical split

Horizontal split

SQL Server Performance and Tuning Guide 2-15

Sybase SQL Server Release 11.0.x Denormalizing for Performance

• The table split corresponds to a natural separation of the rows,
such as different geographical sites or historical vs. current data.
You might choose horizontal splitting if you have a table that
stores huge amounts of rarely used historical data, and your
applications have high performance needs for current data in the
same table.

• Table splitting distributes data over the physical media (there are
other ways to accomplish this goal, too).

Generally, horizontal splitting adds a high degree of complication to
applications. It usually requires different table names in queries,
depending on values in the tables. This complexity alone usually far
outweighs the advantages of table splitting in most database
applications. As long as the index keys are short, and the indexes are
used for queries on the table (rather than table scans being used),
doubling or tripling the number of rows in the table may increase the
number of disk reads required for a query by only one index level.

Figure 2-15 shows how the authors table might be split to separate
active and inactive authors:

Figure 2-15: Horizontal partitioning of active and inactive data

Vertical Splitting

Use vertical splitting in the following circumstances:

• Some columns are accessed more frequently than other columns.

• The table has wide rows, and splitting the table reduces the
number of pages that need to be read.

active
Authors

inactive
active

active
inactive

Inactive_Authors

inactive

Active_Authors

Problem: Usually only
active records are accessed

Solution: Partition horizontally into active and inactive data

2-16 Database Design and Denormalizing for Performance

Denormalizing for Performance Sybase SQL Server Release 11.0.x

Vertical table splitting makes even more sense when both of the
above conditions are true. When a table contains very long columns
that are not accessed frequently, placing them in a separate table can
greatly speed the retrieval of the more frequently used columns.
With shorter rows, more data rows fit on a data page, so fewer pages
can be accessed for many queries.

Figure 2-16 shows how the authors table can be partitioned.

Figure 2-16: Vertically partitioning a table

Managing Denormalized Data

Whatever denormalization techniques you use, you need to develop
management techniques to ensure data integrity. Choices include:

• Triggers, which can update derived or duplicated data anytime
the base data changes

• Application logic, using transactions in each application that
updates denormalized data to be sure that changes are atomic

• Batch reconciliation, run at appropriate intervals to bring the
denormalized data back into agreement

From an integrity point of view, triggers provide the best solution,
although they can be costly in terms of performance.

Problem:
Frequently access lname and fname,
infrequently access phone and city

Solution: Partition data vertically

Authors

Authors_Infrequent

cityfname

Authors_Frequent
au_id phoneau_id lname fname

lname phone

 city

au_id

SQL Server Performance and Tuning Guide 2-17

Sybase SQL Server Release 11.0.x Denormalizing for Performance

Using Triggers to Manage Denormalized Data

In Figure 2-17, the sum_adv column in the titles table stores
denormalized data. A trigger updates the sum_adv column whenever
the advance column in titleauthor changes.

Figure 2-17: Using triggers to maintain normalized data

Using Application Logic to Manage Denormalized Data

If your application has to ensure data integrity, it will have to ensure
that the inserts, deletes, or updates to both tables occur in a single
transaction.

Figure 2-18: Maintaining denormalized data via application logic

If you use application logic, be very sure that the data integrity
requirements are well documented and well known to all application
developers and to those who must maintain applications.

➤ Note
Using application logic to manage denormalized data is risky. The same

logic must be used and maintained in all applications that modify the data.

title_id sum_adv
 titles

title_id au_id advance
titleauthor

au_id sum_adv
 authors

title_id au_id advance
titleauthor

2-18 Database Design and Denormalizing for Performance

Denormalizing for Performance Sybase SQL Server Release 11.0.x

Batch Reconciliation

If 100-percent consistency is not required at all times, you can run a
batch job or stored procedure during off hours to reconcile duplicate
or derived data.

You can run short, frequent batches or longer, less frequent batches.

Figure 2-19: Using batch reconciliation to maintain data

SQL Server Performance and Tuning Guide 3-1

3 Data Storage 3.

Performance and Object Storage

This chapter explains how SQL Server stores data rows on pages,
and how these pages are used in select and data modification
statements when there are no indexes. It lays the foundation for
understanding how to improve your SQL Server’s performance by
creating indexes, by tuning your queries, and by addressing object
storage issues. In order to understand the work that SQL Server is
performing, you need to understand:

• How tables are stored in SQL Server and how tables without
indexes are accessed

• How indexes are structured

• How tables are accessed through indexes

• How to write queries and search clauses to maximize the use of
your indexes

• How to use SQL Server tools to see what choices the optimizer
makes

Most of the time spent executing a query is spent reading data pages
from disk. Therefore, most of your performance improvement—over
80 percent, according to many performance and tuning experts—
comes from reducing the number of disk reads that SQL Server
needs to perform for each query.

Major Performance Gains Through Query Optimization

If a query on your server performs a table scan, SQL Server reads
every page in the table because no useful indexes are available to
help it retrieve the data you need. The individual query has very
poor response time, because disk reads take time. Each time you or
another user executes a query that performs large table scans, it has
a negative impact on the performance of other queries on your
server. It can increase the time other users have to wait for a
response, since it consumes system resources such as CPU time, disk
I/O, and network capacity.

When you have become thoroughly familiar with the tools, the
indexes on your tables, and the size and structure of the objects in
your applications, you should be able to estimate the number of I/O

3-2 Data Storage

Query Processing and Page Reads Sybase SQL Server Release 11.0.x

operations a given join or select operation will perform. Knowing the
indexed columns on your tables and the table and index sizes, you
should be able to make statements like:

• This is a point query, returning a single row or a small number of
rows that match a specific where clause condition. The condition in
the where clause is indexed; it should perform two to four I/Os on
the index and one more to read the correct data page.

• All of the columns in the select list and where clause for this query
are included in a nonclustered index. This query will probably
perform a scan on the leaf level of the index, about 600 pages. If I
add an unindexed column to the select list, it has to scan the table,
and that would require 5000 disk reads.

• No useful indexes are available for this query; it is going to do a
table scan, requiring at least 5000 disk reads.

Later chapters explain how to determine which access method is
being used for a query, the size of the tables and indexes, and the
amount of I/O a query performs.

Query Processing and Page Reads

Each time you submit a Transact-SQL query, the SQL Server
optimizer determines the optimal access path to find the needed
data. In most database applications, you have many tables in the
database, and each table has one or more indexes. The optimizer
attempts to find the most efficient access path to your data for each
table in the query. Depending on whether you have created indexes,
and what kind of indexes you have created, the optimizer’s access
method options include:

• A table scan – reading all of the table’s data pages, sometimes
hundreds or thousands of pages

• Index access – using the index to find only the data pages needed,
sometimes only a half-dozen page reads in all

• Index covering – using only a nonclustered index to return data,
without reading the actual data rows, requiring only a fraction of
the page reads required for a table scan

Having the right set of indexes on your tables should allow most of
your queries to access the data they need with a minimum number of
page reads.

SQL Server Performance and Tuning Guide 3-3

Sybase SQL Server Release 11.0.x SQL Server Data Pages

SQL Server Data Pages

The basic unit of storage for SQL Server is a page. On most systems,
a page is 2K, 2048 bytes. A page contains 32 bytes of header
information. The rest of the page is available to store data rows and
row pointers (the row offset table).

Figure 3-1: A SQL Server data page

Page headers use 32 bytes, leaving 2016 bytes for data storage on
each page.1 Information in the page header includes pointers to the
next page and the previous page used by the object, and the object ID
of the table or index using that page.

Each row is stored contiguously on the page. The information stored
for each row consists of the actual column data plus information
such as the row number (one byte) and the number of variable-
length and null columns in the row (one byte).

Rows cannot cross page boundaries, except for text and image
columns. Each data row has at least 4 bytes of overhead; rows that
contain variable-length data have additional overhead. Chapter 5,
“Estimating the Size of Tables and Indexes,” explains overhead in
detail.

The row offset table stores pointers to the starting location for each
data row on the page. Each pointer requires 2 bytes.

1. The maximum number of bytes for a data row is 1960 (plus two bytes of overhead) due to
overhead for logging: the row, plus the overhead about the transaction, must fit on a
single page in the transaction log.

Overhead

32 Bytes

Usable space

2016 bytes

Page size

2048 bytes

Page header

Row offset table

Data rows

3-4 Data Storage

SQL Server Data Pages Sybase SQL Server Release 11.0.x

Row Density on Data Pages

The usable space on a page, divided by the row size, tells us how
many rows can be stored on a page. This figure gives us the row
density. The size of rows can affect your performance dramatically:
the smaller the data rows, the more rows you can store per page.
When rows are small, you’ll need to read fewer pages to answer your
select queries, so your performance will be better for queries that
perform frequent table scans.

Figure 3-2: Row density

Row density can sometimes have a negative impact on throughput
when data is being modified. If one user changes data in a row, the
page is locked until the transaction commits. Other users cannot
access the changed row or any other data on the page until the lock is
released. SQL Server allows you to specify the maximum number of
rows on a page for tables where such lock contention is a problem.
See “Reducing Lock Contention with max_rows_per_page” on page
11-31 for more information.

If your table contains variable-length fields, the row size depends on
the actual length of the data, so row density can vary from page to
page.

Extents

SQL Server pages are always allocated to a database object, such as a
table or index, in blocks of 8 pages at a time. This block of 8 pages is
called an extent. The smallest amount of space that a table or index
can occupy is one extent, or 8 data pages. Extents are deallocated
only when all the pages in an extent are empty.

See Figure 3-5 on page 3-10 for an illustration of extents and object
storage.

header header

5 rows/page
 less dense

10 rows/page
 more dense

header

Page 1 Page 2 Page 1

A
B
C
D
E

A
B
C
D
E

F
G
H
I
J

F
G
H
I
J

SQL Server Performance and Tuning Guide 3-5

Sybase SQL Server Release 11.0.x SQL Server Data Pages

In most cases, the use of extents in SQL Server is transparent to the
user. One place where information about extents is visible is in the
output from dbcc commands that check allocation. These commands
report information about objects and the extents used by the objects.

Reports from sp_spaceused display the space allocated (the reserved
column) and the space used by data and indexes. The unused column
displays the amount of space in extents that are allocated to an object,
but not yet used to store data.

sp_spaceused titles

name rowtotal reserved data index_size unused
------ -------- -------- ------- ---------- ------
titles 5000 1392 KB 1250 KB 94 KB 48 KB

In this report, the titles table and its indexes have 1392K reserved on
various extents, including 48K (24 data pages) unallocated in those
extents.

Linked Data Pages

Each table and each level of each index forms a doubly-linked list of
pages. Each page in the object stores a pointer to the next page in the
chain and to the previous page in the chain. When new pages need to
be inserted, the pointers on the two adjacent pages change to point to
the new page. When SQL Server scans a table, it reads the pages in
order, following these page pointers.

Figure 3-3: Page linkage

SQL Server tries to keep the page allocations close together for
objects, as follows:

prev next

prev next

prev nextExisting pages

New page to be linked

Old link
New link

3-6 Data Storage

SQL Server Data Pages Sybase SQL Server Release 11.0.x

• If there is an unallocated page in the current extent, that page is
assigned to the object.

• If there is no free page in the current extent, but there is an
unallocated page on another of the object’s extents, that extent is
used.

• If all of the object’s extents are full, but there are free extents on
the allocation unit, the new extent is allocated on a unit already
used by the object.

For information on how page allocation is performed for partitioned
tables, see “Partitioning Tables” on page 13-17.

Text and Image Pages

Text and image columns for a table are stored as a separate page
chain, consisting of a set of text or image pages. If a table has multiple
text or image columns, it still has only one of these separate data
structures. Each table with a text or image column has one of these
page chains. The table itself stores a 16-byte pointer to the first page
of the text value for the row. Additional pages for the value are
linked by next and previous pointers, just like the data pages. The
first page stores the number of bytes in the text value. The last page
in the chain for a value is terminated with a null next-page pointer.

Figure 3-4 shows a table with text values. Each of the three rows
stores a pointer to the starting location of its text value in the
text/image page chain.

Figure 3-4: Text and image data storage

Reading or writing a text or image value requires at least two page
reads or writes:

• One for the pointer

Data page

Text object

16 bytes
pointers0x00015f...

0x00015d...

0x00015a...

998723567

409567008

486291786

End of page chain
for a value

015a 015d 015f

SQL Server Performance and Tuning Guide 3-7

Sybase SQL Server Release 11.0.x Additional Page Types

• One for the actual location of the text in the text object

Each text or image page stores up to 1800 bytes. Every non-null value
uses at least one full data page.

Text objects are listed separately in sysindexes. The index ID column,
indid, is always 255, and the name is the table name, prefixed with the
letter “t”.

Additional Page Types

In addition to the page types discussed above for table storage, SQL
Server uses index pages and several other page types. Indexes are
discussed in detail in the next chapter, and distribution pages are
discussed in “How the Optimizer Uses the Statistics” on page 6-38.

For completeness, this section describes other types of pages that
SQL Server uses to track space allocation and the location of database
objects. These page types are mainly used to expedite the process of
allocating and deallocating space for objects. They provide a way for
SQL Server to allocate additional space for objects near space that is
already used by the object. This strategy also helps performance by
reducing disk-head travel.

These pages track disk space use by database objects:

• Global Allocation Map (GAM) pages, which contain allocation
bitmaps for an entire database.

• Allocation pages, which track space usage and objects within
groups of 256 database pages, 1/2 megabyte.

• Object Allocation Map (OAM) pages, which contain information
about the extents used for an object. Each table and index has at
least one OAM page to track where pages for the object are stored
in the database.

• Control pages, which exist only for tables that are partitioned.
There is one control page for each partition. For more information
on control pages, see “Effects on System Tables” on page 13-19.

Global Allocation Map (GAM) Pages

Each database has a GAM page. It stores a bitmap for all allocation
units of a database, with one bit per allocation unit. When an
allocation unit has no free extents available to store objects, its
corresponding bit in the GAM is set to 1. This mechanism expedites

3-8 Data Storage

Additional Page Types Sybase SQL Server Release 11.0.x

allocating new space for objects. Users cannot view the GAM; it
appears in the system catalogs as the table sysgams.

Allocation Pages

When you create a database or add space to a database, the space is
divided into allocation units of 256 data pages. The first page in each
allocation unit is the allocation page. The allocation page tracks
space usage by objects on all of the extents in the unit by recording
the object IDs and tracking what pages are in use and what pages are
free in each extent. For each extent, it also stores the page ID for the
OAM page of the object stored on that extent.

dbcc allocation-checking commands report space usage by allocation
unit. Page 0 and all pages that are multiples of 256 are allocation
pages.

Object Allocation Map (OAM) Pages

Each table, index and text chain has one or more OAM pages stored
on pages allocated to the table or index. If a table has more than one
OAM page, the pages are linked in a chain. These OAM pages store
pointers to each allocation unit that contains pages for the object. The
first page in the chain stores allocation hints, indicating which OAM
page in the chain has information about allocation units with free
space. This provides a fast way to allocate additional space for
objects, keeping the new space close to pages already used by the
object.

Each OAM page holds allocation mappings (OAM entries) for 250
allocation units. A single OAM page stores information for 2000 to
63,750 data or index pages.

Why the Range?

Each entry in the OAM page stores the page ID of the allocation page
and the number of free and used pages for the object within that
allocation page. If a table is widely spread out across the storage
space for a database so that each allocation unit stores only one
extent (8 pages) for the table, the 250 rows on the OAM page can only
point to 250* 8 = 2000 database pages. If the table is very compactly
stored, so that it uses all 255 pages available in each of its allocation
units, one OAM page stores allocation information for 250 * 255 =
63,750 pages.

SQL Server Performance and Tuning Guide 3-9

Sybase SQL Server Release 11.0.x Additional Page Types

Relationships Between Objects, OAM Pages, and Allocation Pages

Figure 3-5 shows how allocation units, extents, and objects are
managed by OAM pages and allocation pages.

• There are two allocation units shown, one starting at page 0 and
one at page 256. The first page of each is the allocation page.

• A table is stored on four extents, starting at pages 1 and 24 on the
first allocation unit and pages 272 and 504 on the second unit.

• The first page of the table is the table’s OAM page. It points to the
allocation page for each allocation unit where the object uses
pages, so it points to pages 0 and 256.

• Allocation pages 0 and 256 store object IDs and information about
the extents and pages used on the extent. So, allocation page 0
points to page 1 and 24 for the table, and allocation page 256
points to pages 272 and 504. Of course, these allocation pages also
point to other objects stored in the allocation unit, but these
pointers are not shown here.

3-10 Data Storage

Heaps of Data: Tables Without Clustered Indexes Sybase SQL Server Release 11.0.x

Figure 3-5: OAM page and allocation page pointers

Heaps of Data: Tables Without Clustered Indexes

If you create a table on SQL Server, but do not create a clustered
index, the table is stored as a heap. The data rows are not stored in
any particular order, and new data is always inserted on the last page
of the table.

This section describes how select, insert, delete, and update
operations perform on heaps when there is no nonclustered index to
aid in retrieving data.

283

511

279

2824 25 26 27 29 30 31

..

274

7

256

50 1 2 3 4 6

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

257 258 259 260 261 262 263

264 265 266 267 268 269 270 271

272 273 275 276 277 278

280 281 282 284 285 286 287

.

248 249 250 251 252 253 254 255

504 505 506 507 508 509 510

OAM page

Pages used
by object

Other pages

Allocation
page

OAM page pointers
to allocation pages

Allocation page
tracks page usage
on these extents

One extent,
8 pages

...

SQL Server Performance and Tuning Guide 3-11

Sybase SQL Server Release 11.0.x Heaps of Data: Tables Without Clustered Indexes

Select Operations on Heaps

When you issue a select operation on a heap and there is no useful
nonclustered index, SQL Server must scan every data page in the
table to find every row that satisfies the conditions in the query.
There may be one row, many rows, or no rows that match. SQL
Server must examine every row on every page in the table. SQL
Server reads the first column in sysindexes for the table, reads the first
page into cache, and then follows the next page pointers until it finds
the last page of the table.

Figure 3-6: Selecting from a heap

The phrase “no useful index” is important in describing the
optimizer’s decision to perform a table scan. Sometimes, an index
exists on the columns you name in your where clause, but the
optimizer determines that it would be more costly to use the index
than to scan the table. Later chapters describe how the optimizer
costs queries using indexes and how you can get more information
about why the optimizer makes these choices.

Table scans are also used when you issue a select without a where
clause so that you select all of the rows in a table. The only exception
is when the query includes only columns that are keys in a
nonclustered index. For more information, see “Index Covering” on
page 4-21.

Inserting Data into a Heap

When you insert data into a heap, the data row is always added to
the last page of the table. If the last page is full, a new page is
allocated in the current extent. If the extent is full, SQL Server looks

Next/previous page pointers Selected rows

Page scanning

select * from employee

where emp_id = 12854

End of page chain

3-12 Data Storage

Heaps of Data: Tables Without Clustered Indexes Sybase SQL Server Release 11.0.x

for empty pages on other extents in use by the table. If there are no
available pages, a new extent is allocated to the table.

Figure 3-7: Inserting a row into a heap table

SQL Server allows you to specify the maximum number of rows on a
page. If you use this option, a heap page is “full” when you have
inserted that many rows on the page, and a new page is allocated.
See “Reducing Lock Contention with max_rows_per_page” on page
11-31 for more information.

If there is no clustered index on a table, and the table is not
partitioned, the sysindexes.root entry for the heap table stores a
pointer to the last page of the heap to locate the page where the data
needs to be inserted. In addition, a special bit in the page header
enables SQL Server to track whether row inserts are taking place
continuously at the end of the page, and disables the normal page-
split mechanism (explained on “Page Splitting on Full Data Pages”
on page 4-7).

One of the severe performance limits on heap tables is that the page
must be locked when the row is added. If many users are trying to
add rows to a heap table at the same time, they will block each
other’s access to the page. These characteristics of heaps are true for:

• Single row inserts using insert

• Multiple row inserts using select into or insert...select (an insert
statement that selects rows from another table, or from the same
table)

• Bulk copy into the table

In many cases, creating a clustered index for the table solves these
performance problems for heaps and provides real performance
gains for user queries. Another workaround for the last-page
problem in heaps is to use partitions to create many “last pages” for
the heap table. See “Improving Insert Performance with Partitions”
on page 13-12.

New row

insert employee

values (17823, "White", "Snow", ...)

SQL Server Performance and Tuning Guide 3-13

Sybase SQL Server Release 11.0.x Heaps of Data: Tables Without Clustered Indexes

Deleting Data from a Heap

When you delete rows from a heap, and there is no useful index, SQL
Server scans all of the data rows in the table to find the rows to delete.
It has no way of knowing how many rows match the conditions in
the query without examining every row.

When a data row is deleted from the page, the rows that follow it on
the page move up so that the data on the page remains contiguous.

Figure 3-8: Deleting rows from a heap table

If you delete the last row on a page, the page is deallocated. If there
are other pages on the extent still in use by the table, the page can be
used again by the table when a page is needed. If all other pages on
the extent are empty, the whole extent is deallocated. It can be
allocated to other objects in the database. The first data page for a
table or index is never deallocated.

Update Operations on Heaps

Like other operations on heaps, an update that has no useful index on
the columns in the where clause performs a table scan to locate the
rows that need to be changed.

Updates on heaps can be performed in several ways:

• If the length of the row does not change, the updated row
replaces the existing row, and no data moves on the page.

Next page pointers

Deleted rows

Page scanning

Empty space

After delete:

Before delete:

delete from employee

where emp_id = 12854

3-14 Data Storage

How SQL Server Performs I/O for Heap Operations Sybase SQL Server Release 11.0.x

• If the length of the row changes, and there is enough free space on
the page, the row remains in the same place on the page, but other
rows move up or down to keep the rows contiguous on the page.
The row offset pointers at the end of the page are adjusted to
point to the changed row locations.

• If the row does not fit on the page, the row is deleted from its
current page, and the “new” row is inserted on the last page of
the table. This type of update can cause contention on the last
page of the heap, just as inserts do.

For more information on how updates are performed, see “Update
Operations” on page 7-32.

How SQL Server Performs I/O for Heap Operations

When a query needs a data page, SQL Server first checks to see if the
page is available in a data cache. If the page is not available, then it
must be read from disk.

A newly installed SQL Server has a single data cache configured for
2K I/O. Each I/O operation reads or writes a single SQL Server data
page. A System Administrator can:

• Configure multiple caches

• Bind tables and other objects to the caches

• Configure data caches to perform I/O in page-sized multiples, up
to eight data pages (one extent)

To use these caches most efficiently, and to reduce I/O operations,
the SQL Server optimizer can:

• Choose to prefetch up to eight data pages at a time

• Choose between different caching strategies

Sequential Prefetch, or Large I/O

SQL Server‘s data caches can be configured by a System
Administrator to allow large I/Os. When a cache is configured to
allow large I/Os, SQL Server can choose to prefetch data pages.

Caches can contain pools of 2K, 4K, 8K, and 16K buffers, allowing
SQL Server to read up to an entire extent (eight data pages) in a
single I/O operation. When several pages are read into cache with a
single I/O, they are treated as a unit: they age in cache together, and
if any page in the unit has been changed, all pages are written to disk

SQL Server Performance and Tuning Guide 3-15

Sybase SQL Server Release 11.0.x How SQL Server Performs I/O for Heap Operations

as a unit. Since much of the time required to perform I/O operations
is taken up in seeking and positioning, reading 8 pages in a 16K I/O
performs nearly eight times as fast as a single-page 2K I/O.

Caches and Objects Bindings

A table can be bound to a specific cache. If a table is not bound to a
specific cache, but its database is bound to a cache, all of its I/O takes
place in that cache. Otherwise, its I/O takes place in the default
cache. The default cache can also have buffer pools configured for
large I/O. If your applications include some heap tables, they will
probably perform better when bound to a cache that allows large
I/O, or when the default cache is configured for large I/O.

Heaps, I/O, and Cache Strategies

Each SQL Server data cache is managed as an MRU/LRU (most
recently used/less recently used) chain of buffers. As buffers age in
the cache, they move from the MRU end toward the LRU end. When
pages in the cache that have been changed pass a point on the
MRU/LRU chain called the wash marker, SQL Server initiates an
asynchronous write on the page. This ensures that when the pages
reach the LRU end of the cache, they are clean, and can be reused.

Overview of Cache Strategies

SQL Server has two major strategies for using its data cache
efficiently:

• LRU Replacement Strategy reads the data pages sequentially into
the cache, replacing a “least recently used” buffer. The buffer is
placed on the MRU end of the data buffer chain. It moves down
the cache toward the LRU end as more pages are read into the
cache.

SQL Server uses this strategy for:

- Statements that modify data on pages

- Pages that are needed more than once by a single query

- OAM pages

- Many index pages

3-16 Data Storage

How SQL Server Performs I/O for Heap Operations Sybase SQL Server Release 11.0.x

- Queries where LRU strategy is specified in the query

Figure 3-9: LRU strategy takes a clean page from the LRU end of the cache

• “Fetch-and-discard” or MRU replacement strategy is often used
for table scanning on heaps. This strategy reads a page into the
cache just before the wash marker.

Figure 3-10: MRU strategy places pages just before the wash marker

Fetch-and-discard is most often used for queries where a page is
needed only once by the query. This includes:

- Most table scans of large heaps in queries that do not use joins

- One or more tables in certain joins

• The fetch-and-discard strategy is used only on pages actually
read from the disk for the query. If a page is already in cache due
to earlier activity on the table, the page is placed at the MRU end
of the cache.

MRU

Wash marker

Clean buffer

Clean page Dirty page

LRU

To

Clean page

MRU LRUWash marker

SQL Server Performance and Tuning Guide 3-17

Sybase SQL Server Release 11.0.x How SQL Server Performs I/O for Heap Operations

Figure 3-11: Finding a needed page in cache

SQL Server usually uses the fetch-and-discard strategy when it
scans a large heap table and the table is not the inner table of a
join. Each page for the table is needed only once. If the LRU
strategy were used, the pages would move to the top of the MRU
chain and force other pages out of cache.

Select Operations and Caching

Under most conditions, single-table select operations on a heap use:

• The largest I/O available to the table

• Fetch-and-discard (MRU) replacement strategy

For heaps, select operations performing extent-sized I/O can be very
effective. SQL Server can read sequentially through all the extents in
a table.

Unless the heap is being scanned as the inner table of a join, the data
pages are needed only once for the query, so MRU replacement
strategy reads and discards the pages from cache.

➤ Note
Large I/O on heaps is effective as long as the page chains are not

fragmented. See “Maintaining Heaps” on page 3-19 for information on

maintaining heaps.

Data Modification and Caching

SQL Server tries to minimize disk writes by keeping changed pages
in cache. Many users can make changes to a data page while it
resides in the cache. Their changes are logged in the transaction log,
but the changed pages are not written to disk immediately.

MRU LRUWash marker

3-18 Data Storage

How SQL Server Performs I/O for Heap Operations Sybase SQL Server Release 11.0.x

Caching and Inserts on Heaps

Inserts on heaps take place on the last page of the heap table. If an
insert is the first row on a new page for the table, a clean data buffer
is allocated to store the data page, as shown in Figure 3-12. This page
starts to move down the MRU/LRU chain in the data cache as other
processes read pages into memory.

If a second insert to the page takes place while the page is still in
memory, the page is located in cache, and moves back to the top of
the MRU/LRU chain.

Figure 3-12: Inserts to a heap page in the data cache

The changed data page remains in cache until it moves past the wash
marker or until a checkpoint or the housekeeper task writes it to disk.
“The Data Cache” on page 15-7 explains more about these processes.

Caching and Update and Delete Operations on Heaps

When you update or delete a row from a heap table, the effects on the
data cache are similar to the process for inserts. If a page is already in
the cache, the whole buffer (a single page, or up to eight pages,
depending on the I/O size) is placed on the MRU end of the chain,
and the row is changed. If the page is not in cache, it is read from the
disk into a clean buffer from the LRU end of the cache. Its placement

MRU LRU

Clean page

First insert on a page takes a clean page
from the LRU and puts it on the MRU

Second insert on a page finds the page in
cache, and puts in back at the MRU

Wash marker

SQL Server Performance and Tuning Guide 3-19

Sybase SQL Server Release 11.0.x Heaps: Pros and Cons

on the MRU/LRU chain depends on whether a row on the page
needs to be changed:

• If the page needs to be changed, the buffer is placed on the MRU
end. It remains in cache, where it can be updated repeatedly or be
read by other users before being flushed to disk.

• If the page does not need to be changed, it is placed just before the
wash marker in the cache.

Heaps: Pros and Cons

Sequential disk access is efficient, however, the entire table must
always be scanned to find any value.

Batch inserts can do efficient sequential I/O. However, there is a
potential bottleneck on the last page if multiple processes try to
insert data concurrently.

Heaps work well for small tables and for tables where changes are
infrequent, but do not work well for large tables.

Guidelines for Using Heaps

Heaps can be useful for tables that:

• Are fairly small and use only a few pages

• Do not require direct access to a single random row

• Do not require ordering of result sets

• Have nonunique rows and the above characteristics

• Do not have large numbers of inserts and updates

Partitioned heaps are useful for tables with frequent, large volumes
of batch inserts where the overhead of dropping and creating
clustered indexes is unacceptable. With this exception, there are very
few justifications for heap tables. Most applications perform better
with clustered indexes on the tables.

Maintaining Heaps

Over time, I/O on heaps can become inefficient. Deletes and
updates:

• Can result in many partially filled pages

3-20 Data Storage

The Transaction Log: A Special Heap Table Sybase SQL Server Release 11.0.x

• Can lead to inefficient large I/O, since page chains will not be
contiguous on the extents

Methods for Maintaining Heaps

There are two methods to reclaim space in heaps after deletes and
updates have created empty space on pages or have caused
fragmentation:

• Create and then drop a clustered index

• Use bcp (the bulk copy utility) and truncate table

Reclaiming Space by Creating a Clustered Index

You can create and drop a clustered index on a heap table in order to
reclaim space if updates and deletes have created many partially full
pages in a heap table. To create a clustered index, you must have free
space in the database of at least 120 percent of the table size. Since the
leaf level of the clustered index consists of the actual data rows of the
table, the process of creating the index makes a complete copy of the
table before it deallocates the old pages. The additional 20 percent
provides room for the root and intermediate index levels. If you use
long keys for the index, it will take more space.

Reclaiming Space Using bcp

The steps to reclaim space with bcp are:

1. Copy the table out to a file using bcp.

2. Truncate the table with the truncate table command.

3. Copy the table back in again with bcp.

For more information on bcp, see the SQL Server utility programs
manual for your platform.

The Transaction Log: A Special Heap Table

SQL Server’s transaction log is a special heap table that stores
information about data modifications in the database. The
transaction log is always a heap table; each new transaction record is
appended to the end of the log.

SQL Server Performance and Tuning Guide 3-21

Sybase SQL Server Release 11.0.x The Transaction Log: A Special Heap Table

Later chapters in this book describe ways to enhance the
performance of the transaction log. The most important technique is
to use the log on clause to create database to place your transaction log
on a separate device from your data. See Chapter 14, “Creating User
Databases,” in the System Administration Guide for more information
on creating databases.

Transaction log writes occur frequently. Do not let them contend
with other I/O in the database, which usually happens at scattered
locations on the data pages. Place logs on separate physical devices
from the data and index pages. Since the log is sequential, the disk
head on the log device will rarely need to perform seeks, and you can
maintain a high I/O rate to the log.

Figure 3-13: Data vs. log I/O

Besides recovery, these kinds of operations require reading the
transaction log:

• Any data modification that is performed in deferred mode.

• Triggers that contain references to the inserted and deleted tables.
These tables are built from transaction log records when the
tables are queried.

• Transaction rollbacks.

In most cases, the transaction log pages for these kinds of queries are
still available in the data cache when SQL Server needs to read them,
and disk I/O is not required.

Data storage is scattered

Transaction log
storage is sequential

throughout the data pages

3-22 Data Storage

The Transaction Log: A Special Heap Table Sybase SQL Server Release 11.0.x

SQL Server Performance and Tuning Guide 4-1

4 How Indexes Work 4.

Performance and Indexes

This chapter describes how SQL Server stores indexes and how it
uses indexes to speed data retrieval for select, update, delete, and
insert operations.

From Heaps of Pages to Fast Performance

Indexes are the most important physical design element leading to
high performance:

• They can avoid table scans. Instead of reading hundreds of data
pages, a few index pages and data pages can satisfy many
queries.

• For some queries, data can be retrieved from a nonclustered
index without ever accessing the data rows.

• Clustered indexes can randomize data inserts, avoiding insert
“hot spots” on the last page of a table.

• Indexes can help avoid sorts, if the index order matches the order
of columns in an order by clause.

In addition to their performance benefits, indexes can enforce the
uniqueness of data.

Indexing requires trade-offs. While indexes speed retrieval of data,
they can slow down data modifications, since most changes to the
data also require updating indexes. Optimal indexing demands:

• An understanding of the behavior of queries that access
unindexed heap tables, tables with clustered indexes, and tables
with nonclustered indexes

• An understanding of the mix of queries that run on your server

• An understanding of the SQL Server optimizer

What Are Indexes?

Indexes are database objects that can be created for a table to speed
direct access to specific data rows. Indexes store the values of the key

4-2 How Indexes Work

Types of Indexes Sybase SQL Server Release 11.0.x

or keys that were named when the index was created and logical
pointers to the data pages or to other index pages.

Figure 4-1: A simplified index schematic

Types of Indexes

SQL Server provides two types of indexes:

• Clustered indexes, where the table data is physically stored in the
order of the keys on the index.

• Nonclustered indexes, where the storage order of data in the table
is not related to index keys.

You can create only one clustered index on a table because there is
only one possible physical ordering of the data rows. You can create
up to 249 nonclustered indexes per table.

A table that has no clustered index is called a heap. The rows in the
table are in no particular order, and all new rows are added to the
end of the table. Chapter 3, “Data Storage,” discusses heaps and SQL
operations on heaps.

Index Pages

Index entries are stored as rows on index pages in a format similar to
that for data rows on data pages. Index entries store the key values
and pointers to lower levels of the index, to the data pages (for
clustered indexes) or to the data rows (for the leaf level of
nonclustered indexes). SQL Server uses B-tree indexing, so each
node in the index structure can have multiple children.

Data pagesIndex pages

177-32-1176

267-41-2394

409-56-7008

756-30-7391

899-46-2035

177-32-1176...

213-46-8915...

238-95-7766...

267-41-2394...
341-22-1782...

409-56-7008...

427-17-2319...

527-72-3246...

756-30-7391...

807-91-6654...

527-72-3246...

177-32-1176
756-30-7391

SQL Server Performance and Tuning Guide 4-3

Sybase SQL Server Release 11.0.x Types of Indexes

Index entries are usually much smaller than a data row in a data
page, and index pages are much more densely populated. A data
row might have 200 bytes (including row overhead), so there would
be 10 rows per page. An index on a 15-byte field would have about
100 rows per page (the pointers require 4–9 bytes per row, depending
on the type of index and the index level).

Indexes can have multiple levels:

• Root level

• Leaf level

• Intermediate level

Root Level

The root level is the highest level of the index. There is only one root
page. If the table is very small, so that the entire index fits on a single
page, there are no intermediate levels, and the root page stores
pointers to the data pages. For larger tables, the root page stores
pointers to the intermediate level index pages.

Leaf Level

The lowest level of the index is the leaf level. At the leaf level, the
index contains a key value for each row in the table, and the rows are
stored in sorted order by the index key:

• For clustered indexes, the leaf level is the data.

• For nonclustered indexes, the leaf level contains the index key
values, a pointer to the page where the rows are stored, and a
pointer to the rows on the data page. The leaf level is the level just
above the data.

Intermediate Level

All levels between root and leaf are intermediate levels. An index on
a large table or an index using long keys may have many
intermediate levels. A very small table may not have an intermediate
level; the root pages point directly to the leaf level.

4-4 How Indexes Work

Clustered Indexes Sybase SQL Server Release 11.0.x

Each level (except the root level) of the index is a page chain: The
page headers contain next page and previous page pointers to other
pages at the same index level.

Figure 4-2: Index levels and page chains

For nonclustered indexes, the leaf level is always level 0. In clustered
indexes, the level just above the data level is level 0. Each higher level
is numbered sequentially, with the root page having the highest
value.

B-trees are self-maintaining structures, obtaining additional space as
needed without having to reorganize pages.

Clustered Indexes

In clustered indexes, leaf-level pages are also the data pages. The
data rows are physically ordered by the index key. Physical ordering
means that:

• All entries on a page are in index key order.

• By following the “next page” pointers at the data level, you read
the entire table in index key order.

Level 1 Level 0Level 2

LeafIntermediateRoot

Pointers between
index levels

Next and previous
page chain pointers

Start or end of
chained pages

SQL Server Performance and Tuning Guide 4-5

Sybase SQL Server Release 11.0.x Clustered Indexes

On the root and intermediate pages, each entry points to a page on
the next level.

Figure 4-3: Clustered index on last name

Clustered Indexes and Select Operations

To select a particular last name using a clustered index, SQL Server
first uses sysindexes to find the root page. It examines the values on
the root page and then follows page pointers, performing a binary
search on each page it accesses as it traverses the index. In this
example, there is a clustered index on the “last name” column.

Page 1007
Bennet 1132
Greane 1133
Hunter 1127Page 1001

Bennet 1007
Karsen 1009
Smith 1062 Page 1009

Karsen 1009

Page 1132
Bennet
Chan
Dull
Edwards

Page 1133
Greane
Green
Greene

Page 1127
Hunter
Jenkins

Root page Data pagesIntermediate

Key Pointer

Key Pointer

Level 1 Leaf levelLevel 0

4-6 How Indexes Work

Clustered Indexes Sybase SQL Server Release 11.0.x

Figure 4-4: Selecting a row using a clustered index

On the root level page, “Green” is greater than “Bennet,” but less
than Karsten, so the pointer for “Bennet” is followed to page 1007.
On page 1007, “Green” is greater than “Greane,” but less than
“Hunter,” so the pointer to page 1133 is followed to the leaf level
page, where the row is located and returned to the user.

This retrieval via the clustered index requires:

• One read for the root level of the index

• One read for the intermediate level

• One read for the data page

These reads may come either from cache (called a logical read) or
from disk (called a physical read). “Indexes and I/O Statistics” on
page 6-8 provides more information on physical and logical I/O and
SQL Server tools for reporting it. On tables that are frequently used,
the higher levels of the indexes are often found in cache, with lower
levels and data pages being read from disk. See “Indexes and
Caching” on page 4-23 for more details on how indexes use the
cache.

This description covers point queries, queries that use the index key
in the where clause to find a single row or a small set of rows. Chapter

Page 1007
Bennet 1132
Greane 1133
Hunter 1127

Page 1009
Karsen 1009

Page 1132
Bennet
Chan
Dull
Edwards

Page 1133
Greane
Green
Greene

Page 1127
Hunter
Jenkins

Page 1001
Bennet 1007
Karsen 1009
Smith 1062

Root page Data pagesIntermediate

Key Pointer

Key Pointer

select *
from employees
where lname = "Green"

SQL Server Performance and Tuning Guide 4-7

Sybase SQL Server Release 11.0.x Clustered Indexes

7, “The SQL Server Query Optimizer,” describes processing more
complex types of queries.

Clustered Indexes and Insert Operations

When you insert a row into a table with a clustered index, the data
row must be placed in physical order according to the key value on
the table. Other rows on the data page move down on the page, as
needed, to make room for the new value. As long as there is room for
the new row on the page, the insert does not affect any other pages in
the database.The clustered index is used to find the location for the
new row. Figure 4-5 shows a simple case where there is room on an
existing data page for the new row. In this case, the key values in the
index do not need to change.

Figure 4-5: Inserting a row into a table with a clustered index

Page Splitting on Full Data Pages

If there is not enough room on the data page for the new row, a page
split must be performed:

• A new data page is allocated on an extent already in use by the
table. If there is no free page, a new extent is allocated.

Page 1001
Bennet 1007
Karsen 1009
Smith 1062

Page 1132
Bennet
Chan
Dull
Edwards

Page 1133
Greane
Greco
Green
Greene

Page 1127
Hunter
Jenkins

Page 1007
Bennet 1132
Greane 1133
Hunter 1127

Page 1009
Karsen 1009

Root page Data pagesIntermediate

Key Pointer

Key Pointer

insert employees (lname)
values ("Greco")

4-8 How Indexes Work

Clustered Indexes Sybase SQL Server Release 11.0.x

• The next and previous page pointers on adjacent pages are
changed to incorporate the new page in the page chain. This
requires reading those pages into memory and locking them.

• Approximately one-half of the rows are moved to the new page,
with the new row inserted in order.

• The higher levels of the clustered index change to point to the
new page.

• If the table also has nonclustered indexes, all of their pointers to
the affected data rows must be changed to point to the new page
and row locations. See “Nonclustered Indexes” on page 4-13.

There are some cases where page splitting is handled slightly
differently See “Exceptions to Page Splitting” on page 4-9.

In Figure 4-6, a page split occurs, which requires adding a new row
to an existing index page, page 1007.

Figure 4-6: Page splitting in a table with a clustered index

Page 1144
Green
Greene

Page 1133
Greane
Greco
Green
Greene

Page 1132
Bennet
Chan
Dull
Edwards

Page 1133
Greane
Greaves
Greco

Page 1127
Hunter
Jenkins

Page 1007
Bennet 1132
Greane 1133
Green 1144
Hunter 1127

Page 1009
Karsen 1009

Page 1001
Bennet 1007
Karsen 1009
Smith 1062

Root page Data pagesIntermediate

Key Pointer

Key Pointer

insert employees (lname)
values ("Greaves")

Before

SQL Server Performance and Tuning Guide 4-9

Sybase SQL Server Release 11.0.x Clustered Indexes

Exceptions to Page Splitting

There are exceptions to the 50-50 pages split:

• If you insert a huge row that cannot fit on either page before or
after a page split, two new pages are allocated, one for the huge
row and one for the rows that follow it.

• If possible, SQL Server keeps duplicate values together when it
splits pages.

• If SQL Server detects that all inserts are taking place at the end of
the page, due to a increasing key value, the page is not split when
it is time to insert a new row that does not fit at the bottom of the
page. Instead, a new page is allocated, and the row is placed on
the new page.

• SQL Server also detects when inserts are taking place in order at
other locations on the page also and the page is split at the
insertion point.

Page Splitting on Index Pages

If a new row needs to be added to a full index page, the page split
process on the index page is similar to the data page split. A new
page is allocated, and half the index rows are moved to the new page.
A new row is inserted at the next highest level of the index to point
to the new index page.

Performance Impacts of Page Splitting

Page splits are expensive operations. In addition to the actual work
of moving rows, allocating pages, and logging the operations, the
cost is increased by:

• Updating the clustered index itself

• Updating all nonclustered indexes entries that point to the rows
that are affected by the split

When you create a clustered index for a table that will grow over
time, you may want to use fillfactor to leave room on data pages and
index pages. This reduces the number of page splits for a time. See
“Choosing Fillfactors for Indexes” on page 6-44.

4-10 How Indexes Work

Clustered Indexes Sybase SQL Server Release 11.0.x

Overflow Pages

Special overflow pages are created for non-unique clustered indexes
when a newly inserted row has the same key as the last row on a full
data page. A new data page is allocated and linked into the page
chain, and the newly inserted row is placed on the new page.

Figure 4-7: Adding an overflow page to a nonunique clustered index

The only rows that will be placed on this overflow page are
additional rows with the same key value. In a non-unique clustered
index with many duplicate key values, there can be numerous
overflow pages for the same value.

The clustered index does not contain pointers directly to overflow
pages. Instead, the next page pointers are used to follow the chain of
overflow pages until a value is found that does not match the search
value.

Clustered Indexes and Delete Operations

When you delete a row from a table that has a clustered index, other
rows on the page move up to fill the empty space so that data
remains contiguous on the page. Figure 4-8 shows a page with four

insert employees (l_name)
values("Greene")

Page 1133
Greane
Greco
Green
Greene

data pages

Before insert

Overflow data
page

Page 1134
Gresham
Gridley

Page 1133
Greane
Greco
Green
Greene

Page 1156
Greene

Page 1134
Gresham
Gridley

After insert

SQL Server Performance and Tuning Guide 4-11

Sybase SQL Server Release 11.0.x Clustered Indexes

rows before a delete removes the second row on the page. The
following two rows move up.

Figure 4-8: Deleting a row from a table with a clustered index

Deleting the Last Row on a Page

If you delete the last row on a data page:

• The page is deallocated.

• The next and previous page pointers on the adjacent pages are
changed.

• The row that points to that page in the intermediate levels of the
index is removed.

If the deallocated data page is on the same extent as other pages
belonging to the table, it is used again when that table needs an
additional page. If the deallocated data page is the last page on the

Page 1132
Bennet
Chan
Dull
Edwards

Page 1133
Greane
Greco
Greene

Page 1127
Hunter
Jenkins

Page 1001
Bennet 1007
Karsen 1009
Smith 1062

delete
from employees
where lname = "Green"

Page 1007
Bennet 1132
Greane 1133
Hunter 1127

Page 1009
Karsen 1009

Root page Data pagesIntermediate

Key Pointer

Key Pointer

G
reen

Page 1133
Greane
Green
Greco
Greene

Before delete

Data to be
deleted

4-12 How Indexes Work

Clustered Indexes Sybase SQL Server Release 11.0.x

extent that belongs to the table, the extent is also deallocated, and it
becomes available for the expansion of other objects in the database.

Figure 4-9: Deleting the last row on a page (before the delete)

In Figure 4-10, which shows the table after the delete, the pointer to
the deleted page has been removed from index page 1007 and the
following index rows on the page have been moved up to keep the
space used contiguous.

Page 1007
Bennet 1132
Greane 1133
Gridley 1134
Hunter 1127

Page 1009
Karsen 1009

Page 1133
Greane
Green
Greane

Page 1134
Gridley

Page 1127
Hunter
Jenkins

Page 1001
Bennet 1007
Karsen 1009
Smith 1062

delete
from employees
where lname = "Gridley"

Root page Data pagesIntermediate

Key Pointer

Key Pointer

Data to be
deleted

SQL Server Performance and Tuning Guide 4-13

Sybase SQL Server Release 11.0.x Nonclustered Indexes

Figure 4-10: Deleting the last row on a page (after the delete)

Index Page Merges

If you delete a pointer from an index page, leaving only one row on
that page, the row is moved onto an adjacent page, and the empty
page is deallocated. The pointers on the parent page are updated to
reflect the changes.

Nonclustered Indexes

The B-tree works much the same for nonclustered indexes as it does
for clustered indexes, but there are some differences. In nonclustered
indexes:

• The leaf pages are not the same as the data pages.

• The leaf level stores one key-pointer pair for each row in the
table.

• The leaf level pages store the index keys and page pointers, plus
a pointer to the row offset table on the data page. This
combination of page pointer plus the row offset number is called
the row ID, or RID.

G
ridley

Page 1007
Bennet 1132
Greane 1133
Hunter 1127

Page 1009
Karsen 1009

Page 1134

Page 1001
Bennet 1007
Karsen 1009
Smith 1062

delete
from employees
where lname = "Gridley"

Root page Data pagesIntermediate

Key Pointer

Key Pointer

Empty page
available for
reallocation

G
ridley

Page 1133
Greane
Green
Greane

Page 1127
Hunter
Jenkins

4-14 How Indexes Work

Nonclustered Indexes Sybase SQL Server Release 11.0.x

• The root and intermediate levels store index keys and page
pointers to other index pages. They also store the row ID of the
key’s data row.

With keys of the same size, nonclustered indexes require more space
than clustered indexes.

Leaf Pages Revisited

To clearly understand the difference between clustered and
nonclustered indexes, it is important to recall the definition of the
leaf page of an index: It is the lowest level of the index where all of
the keys for the index appear in sorted order.

In clustered indexes, the data rows are stored in order by the index
keys, so by definition, the data level is the leaf level. There is no other
level of a clustered index that contains one index row for each data
row. Clustered indexes are sparse indexes. The level above the data
contains one pointer for every data page.

In nonclustered indexes, the row just “above” the data is the leaf
level: it contains a key-pointer pair for each data row. Nonclustered
indexes are dense. At the level above the data, they contain one row
for each data row.

Row IDs and the Offset Table

Row IDs are managed by an offset table on each data page. The offset
table starts at the last byte on the page. There is a 2-byte offset table
entry for each row on the page. As rows are added, the offset table
grows from the end of the page upward as the rows fill from the top
of the page. The offset table stores the byte at which its
corresponding row on the page starts.

SQL Server Performance and Tuning Guide 4-15

Sybase SQL Server Release 11.0.x Nonclustered Indexes

Figure 4-11: Data page with the offset table

When additional rows are inserted between existing rows on the
page, an additional value is added to the row offset table, and the
offsets for each row are adjusted. The row ID points to the offset
table, and the offset table points to the start of the data on the page.
When rows are added or deleted, changes are made to the offset
table, but the row IDs the index pointers for existing rows do not
change. If you delete a row from the page, its row offset is set to 0.

Figure 4-12 shows the same page as Figure 4-11 after a new row 20-
byte row has been inserted as the second row on the page. The
existing rows have moved down and their offset values have

136 76 56 32

Row Row Length in
offset bytes

1 32 24

2 56 20

3 76 60

4 136 48

Page header

Rows fill from the top down

Offset table fills from the bottom up

4-16 How Indexes Work

Nonclustered Indexes Sybase SQL Server Release 11.0.x

increased. A row offset entry for the new row has been added. Note
that the row offset values are not sequential.

Figure 4-12: Row offset table after an insert

Nonclustered Index Structure

The table illustrated in Figure 4-13 shows a nonclustered index on
lname. The data rows at the far right show pages in ascending order
by employee_id (10, 11, 12, and so on), due to a clustered index on that
column.

The root and intermediate pages store:

• The key value

• The row ID

• The pointer to the next level of the index

The leaf level stores:

• The key value

• The row ID

The row ID in higher levels of the index is essential for indexes that
allow duplicate keys. If a data modification changes the index key or
deletes a row, the row ID positively identifies all occurrences of the
key at all index levels.

Row Row Length in
offset bytes

1 32 24

2 76 20

3 96 60

4 156 48

5 56 20

Page header

156 96 76 3256

New
row

SQL Server Performance and Tuning Guide 4-17

Sybase SQL Server Release 11.0.x Nonclustered Indexes

Figure 4-13: Nonclustered index structure

Nonclustered Indexes and Select Operations

When you select a row using a nonclustered index, the search starts
at the root level. In the example in Figure 4-14, “Green” is greater
than “Bennet,” but less than “Karsen,” so the pointer to page 1007 is
followed. “Green” is greater than “Greane,” but less than “Hunter,”
so the pointer to page 1133 is followed. Page 1133 is the leaf page,
showing that the row for “Green” is the second position on page
1421. This page is fetched, the “2” byte in the offset table is checked,
and the row is returned from the byte position on the data page.

Page 1132
Bennet 1421,1
Chan 1129,3
Dull 1409,1
Edwards 1018,5

Page 1007
Bennet 1421,1 1132
Greane 1307,4 1133
Hunter 1307,1 1127

Page 1242
10 O’Leary
11 Ringer
12 White
13 Jenkins

Root page Data pagesIntermediate

Key RowID Pointer

Key Pointer

Page 1307
14 Hunter
15 Smith
16 Ringer
17 Greane

Page 1421
18 Bennet
19 Green
20 Yokomoto

Page 1409
21 Dull
22 Greene
23 White

Page 1133
Greane 1307,4
Green 1421,2
Greene 1409,2

Page 1127
Hunter 1307,1
Jenkins 1242,4

Page 1009
Karsen 1411,3 1315

Page 1001
Bennet 1421,1 1007
Karsen 1411,3 1009
Smith 1307,2 1062

Leaf pages

Key RowID Pointer

4-18 How Indexes Work

Nonclustered Indexes Sybase SQL Server Release 11.0.x

Figure 4-14: Selecting rows using a nonclustered index

Nonclustered Index Performance

The query in Figure 4-14 has the following I/O:

• One read for the root level page

• One read for the intermediate level page

• One read for the leaf level page

• One read for the data page

If your applications use a particular nonclustered index frequently,
the root and intermediate pages will probably be in cache, so only
one or two actual disk I/Os need to be performed. When SQL Server
finds a page it needs in the cache, it is called a logical read. When SQL
Server must perform disk I/O, this is called a physical read. When a
physical read is performed, a logical read is required too.

Page 1242
10 O’Leary
11 Ringer
12 White
13 Jenkins

Page 1307
14 Hunter
15 Smith
16 Ringer
17 Greane

Page 1421
18 Bennet
19 Green
20 Yokomoto

Page 1409
21 Dull
22 Greene
23 White

Page 1132
Bennet 1421,1
Chan 1129,3
Dull 1409,1
Edwards 1018,5

Page 1133
Greane 1307,4
Green 1421,2
Greene 1409,2

Page 1127
Hunter 1307,1
Jenkins 1242,4

Page 1007
Bennet 1421,1 1132
Greane 1307,4 1133
Hunter 1307,1 1127

Page 1009
Karsen 1411,3 1315

Page 1001
Bennet 1421,1 1007
Karsen 1411,3 1009
Smith 1307,2 1062

Root page Data pagesIntermediate

Key RowID Pointer

Key Pointer

Leaf pages

Key RowID Pointer

select *

from employee

where lname = "Green"

SQL Server Performance and Tuning Guide 4-19

Sybase SQL Server Release 11.0.x Nonclustered Indexes

Nonclustered Indexes and Insert Operations

When you insert rows into a heap that has a nonclustered index, the
insert goes to the last page of the table. If the heap is partitioned, the
insert goes to the last page on one of the partitions. Then the
nonclustered index is updated to include the new row. If the table
has a clustered index, it is used to find the location for the row. The
clustered index is updated, if necessary, and the nonclustered index
is updated to include the new row.

Figure 4-15 shows an insert into a table with a clustered index. Since
the ID value is 24, the row is placed at the end of the table. A row is
also inserted into the leaf level of the nonclustered index, containing
the row ID of the new values.

Figure 4-15: An insert with a nonclustered index

Page 1242
10 O’Leary
11 Ringer
12 White
13 Jenkins

Page 1307
14 Hunter
15 Smith
16 Ringer
17

Page 1421
18 Bennet
19 Green
20 Yokomoto

Page 1409
21 Dull
22 Greene
23 White
24 Greco

Page 1132
Bennet 1421,1
Chan 1129,3
Dull 1409,1
Edwards 1018,5

Page 1133
Greane 1307,4
Greco 1409,4
Green 1421,2
Greene 1409,2

Page 1127
Hunter 1307,1
Jenkins 1242,4

Page 1007
Bennet 1421,1 1132
Greane 1307,4 1133
Hunter 1307,1 1127

Page 1009
Karsen 1411,3 1315

Page 1001
Bennet 1421,1 1007
Karsen 1411,3 1009
Smith 1307,2 1062

Root page Data pagesIntermediate

Key RowID Pointer

Key Pointer

Leaf pages

Key RowID Pointer

insert employees
(empid, lname)

values(24, "Greco")

4-20 How Indexes Work

Nonclustered Indexes Sybase SQL Server Release 11.0.x

Nonclustered Indexes and Delete Operations

When you delete a row from a table, the query can use a
nonclustered index on the column or columns in the where clause to
locate the data row to delete. The row in the leaf level of the
nonclustered index that points to the data row is also removed. If
there are other nonclustered indexes on the table, the rows on the leaf
level of those indexes are also deleted.

Figure 4-16: Deleting a row from a table with a nonclustered index

If the delete operation removes the last row on the data page, the
page is deallocated and the adjacent page pointers are adjusted.
References to the page are also deleted in higher levels of the index.

If the delete operation leaves only a single row on an index
intermediate page, index pages may be merged, as with clustered
indexes. See “Index Page Merges” on page 4-13.

There is no automatic page merging on data pages, so if your
applications make many random deletes, you can end up with data
pages that have only a single row, or a few rows, on a page.

Page 1133
Greane 1307,4
Greco 1409,4
Green 1421,2
Greene 1409,2

Page 1127
Hunter 1307,1
Jenkins 1242,4

Page 1001
Bennet 1421,1 1007
Karsen 1411,3 1009
Smith 1307,2 1062

Page 1007
Bennet 1421,1 1132
Greane 1307,4 1133
Hunter 1307,1 1127

Page 1009
Karsen 1411,3 1315

G
reen

Root page Data pagesIntermediate

Key RowID Pointer

Key Pointer

Leaf pages

Key RowID Pointer

delete employees
where lname = "Green"

G
reen

Page 1132
Bennet 1421,1
Chan 1129,3
Dull 1409,1
Edwards 1018,5

Page 1242
10 O’Leary
11 Ringer
12 White
13 Jenkins

Page 1307
14 Hunter
15 Smith
16 Ringer
17 Greane

Page 1421
18 Bennet
20 Yokomoto

Page 1409
21 Dull
22 Greene
23 White
24 Greco

SQL Server Performance and Tuning Guide 4-21

Sybase SQL Server Release 11.0.x Index Covering

Index Covering

Nonclustered indexes can provide a special type of optimization
called index covering. Since the leaf level of nonclustered indexes
contains the key values for each row in a table, queries that access
only the key values can retrieve the information by using the leaf
level of the nonclustered index as if it were the actual data. This is
index covering.

You can create indexes on more than one key, called composite
indexes. Composite indexes can have up to 16 columns adding up to
a maximum 256 bytes.

A nonclustered index that covers the query is faster than a clustered
index, because it reads fewer pages: index rows are smaller, more
rows fit on the page, so fewer pages need to be read.

A clustered index, by definition, is covered. Its leaf level contains the
complete data rows. This also means that scanning at that level (that
is, the entire table) is the same as performing a table scan.

There are two forms of optimization using indexes that cover the
query:

• The matching index scan

• The non-matching index scan

For both types of covered queries, the nonclustered index keys must
contain all of the columns named in the select list and any clauses of
your query: where, having, group by, and order by. Matching scans have
additional requirements. “Choosing Composite Indexes” on page
6-28 describes query types that make good use of covering indexes.

Matching Index Scans

This type of index covering lets you skip the last read for each row
returned by the query, the read that fetches the data page. For point
queries that return only a single row, the performance gain is slight—
just one page. For range queries, the performance gain is larger, since
the covering index saves one read for each row returned by the
query.

In addition to having all columns named in the query included in the
index, the columns in the where clauses of the query must include the
leading column of the columns in the index. For example, for an
index on columns A, B, C, D, the following sets can perform
matching scans: A, AB, ABC, AC, ACD, ABD, AD, and ABCD. The

4-22 How Indexes Work

Index Covering Sybase SQL Server Release 11.0.x

columns B, BC, BCD, BD, C, CD, or D do not include the leading
column and cannot be used in matching scans.

When doing a matching index scan, SQL Server uses standard index
access methods to move from the root of the index to the
nonclustered leaf page that contains the first row. It can use
information from the statistics page to estimate the number of pages
that need to be read.

In Figure 4-17, the nonclustered index on lname, fname covers the
query. The where clause includes the leading column, and all columns
in the select list are included in the index.

Figure 4-17: Matching index access does not have to read the data row

Nonmatching Index Scans

When the columns specified in the where clause do not name the
leading column in the index, but all of the columns named in the
select list and other query clauses (such as group by or having) are
included in the index, SQL Server saves I/O by scanning the leaf
level of the nonclustered index, rather than scanning the table. It

Page 1560
Bennet,Sam 1580,1
Chan,Sandra 1129,3
Dull,Normal 1409,1
Edwards,Linda 1018,5

Page 1561
Greane,Grey 1307,4
Greco,Del 1409,4
Green,Rita 1421,2
Greene,Cindy 1703,2

Page 1843
Hunter,Hugh 1307,1
Jenkins,Ray 1242,4

Page 1544
Bennet,Sam 1580,1 1560
Greane,Grey 1649,4 1561
Hunter,Hugh 1649,1 1843

Root page Data pagesIntermediate

Key Pointer

Leaf pages

Key RowID Pointer

select fname, lname
from employees
where lname = "Greene"

Page 1647
10 O’Leary
11 Ringer
12 White
13 Jenkins

Page 1649
14 Hunter
15 Smith
16 Ringer
17 Greane

Page 1580
18 Bennet
20 Yokomoto

Page 1703
21 Dull
22 Greene
23 White
24 Greco

SQL Server Performance and Tuning Guide 4-23

Sybase SQL Server Release 11.0.x Indexes and Caching

cannot perform a matching scan because the first column of the
index is not specified.

The query in Figure 4-18 shows a nonmatching index scan. This
query does not use the leading columns on the index, but all columns
required in the query are in the nonclustered index on lname, fname,
emp_id. The nonmatching scan must examine all rows on the leaf
level. It scans all leaf level index pages, starting from the first page. It
has no way of knowing how many rows might match the query
conditions so it must examine every row in the index.

Figure 4-18: A nonmatching index scan

Indexes and Caching

Indexes pages get special handling in the data cache, as follows:

• Root and intermediate index pages always use LRU strategy.

• Nonclustered index scans can use fetch-and-discard strategy.

• Index pages can use one cache while the data pages use a
different cache.

Page 1544
Bennet,Sam,409... 1580,1 1560
Greane,Grey,486... 1649,4 1561
Hunter,Hugh,457... 1649,1 1843

Page 1561
Greane,Grey,486... 1307,4
Greco,Del,672... 1409,4
Green,Rita,398... 1421,2
Greene,Cindy,127... 1703,2

Page 1843
Hunter,Hugh,457... 1307,1
Jenkins,Ray,723... 1242,4

Page 1560
Bennet,Sam,409... 1580,1
Chan,Sandra,817... 1129,3
Dull,Normal,415... 1409,1
Edwards,Linda,238... 1018,5

Root page Data pagesIntermediate

Key Pointer

Leaf pages

Key RowID Pointer

select lname, emp_id
from employees
where fname = "Rita"

Page 1647
10 O’Leary
11 Ringer
12 White
13 Jenkins

Page 1649
14 Hunter
15 Smith
16 Ringer
17 Greane

Page 1580
18 Bennet
20 Yokomoto

Page 1703
21 Dull
22 Greene
23 White
24 Greco

4-24 How Indexes Work

Indexes and Caching Sybase SQL Server Release 11.0.x

• Index pages can cycle through the cache many times, if number of
index trips is configured.

When a query that uses an index is executed, the root, intermediate,
leaf, and data pages are read in that order. If these pages are not in
cache, they are read into the MRU end of the cache and move toward
the LRU end as additional pages are read in.

Figure 4-19: Caching used for a point query via a nonclustered index

Each time a page is found in cache, it is moved to the MRU end of the
page chain, so the root page and higher levels of the index tend to
stay in the cache. Figure 4-20 shows a root page moving back to the
top of the cache for a second query using the same index.

Root Inter-
mediate

Leaf Data

RILD

1

2

3

4
R Root

I Intermediate

L Leaf

D Data

MRU LRU

SQL Server Performance and Tuning Guide 4-25

Sybase SQL Server Release 11.0.x Indexes and Caching

Figure 4-20: Finding the root index page in cache

Using Separate Caches for Data and Index Pages

Indexes and the tables they index can use different caches. A System
Administrator or table owner can bind a clustered or nonclustered
index to one cache, and its table to another.

Figure 4-21: Caching with separate caches for data and log

Root Inter-
mediate

Leaf Data

ILD

1

2

3

4

R

R Root

I Intermediate

L Leaf

D Data

Root Inter-
mediate

Leaf Data

RIL

D

R Root

I Intermediate

L Leaf

D Data

4-26 How Indexes Work

Indexes and Caching Sybase SQL Server Release 11.0.x

Index Trips Through the Cache

A special strategy keeps index pages in cache. Data pages make only
a single trip through the cache: They are read in at the MRU end or
the cache or placed just before the wash marker, depending on the
cache strategy chosen for the query. Once the pages reach the LRU
end of the cache, the buffer for that page is reused when another page
needs to be read into cache.

Index pages can make multiple trips through the cache, controlled by
a counter. When the counter is greater than 0 for an index page and it
reaches the LRU end of the page chain, the counter is decremented
by one, and the page is placed at the MRU end again.

Figure 4-22: Index page recycling in the cache

By default, the number of trips that an index page makes through the
cache is set to 0. A System Administrator can set the configuration
parameter number of index trips. For more information, see “number of
index trips” on page 11-22 of the System Administration Guide.

I

SQL Server Performance and Tuning Guide 5-1

5 Estimating the Size of Tables and
Indexes 5.

Importance of Sizing

You should know the size of your tables and indexes, and you should
be able to predict the size of your database objects as your tables
grow. Knowing this information will help you:

• Decide on storage allocation, especially if you use segments

• Decide whether it is possible to improve performance for specific
queries

• Determine the optimum size for named data caches for specific
tables and indexes

SQL Server provides several tools that provide information on
current object size or that can predict future size:

• The system procedure sp_spaceused reports on the current size of
an existing table and any indexes.

• The system procedure sp_estspace can predict the size of a table
and its indexes, given a number of rows as a parameter.

• The output of some dbcc commands report on page usage as well
as performing database consistency checks.

You can also compute the size using formulas provided in this
chapter.

Effects of Data Modifications on Object Sizes

The sp_spaceused and dbcc commands report actual space usage. The
other methods presented in this chapter provide size estimates.

Over time, the effects of data modifications on a set of tables tends to
produce data pages and index pages that average approximately 75
percent full. The major factors are:

• When you insert a row onto a full page of a table with a clustered
index, the page splits, leaving two pages that are about 50 percent
full.

• When you delete rows from heaps or from tables with clustered
indexes, the space used on the page decreases. You can have
pages that contain very few rows or even a single row.

5-2 Estimating the Size of Tables and Indexes

Importance of Sizing Sybase SQL Server Release 11.0.x

• After some deletes and page splits have occurred, inserting rows
into tables with a clustered index tends to fill up pages that have
been split or pages where rows have been deleted.

Page splits also take place when rows need to be inserted into full
index pages, so index pages also tend to end up being approximately
75 percent full.

OAM Pages and Size Statistics

Information about the number of pages allocated to and used by an
object is stored on the OAM pages for tables and indexes. This
information is updated by most SQL Server processes when pages
are allocated or deallocated.

The sp_spaceused system procedure reads these values to provide
quick space estimates. Some dbcc commands update these values
while they perform consistency checks.

sp_spaceused uses system functions to locate the size values on the
OAM pages. Here is a simple query that uses the same values,
returning the number of used and reserved pages for all user tables
(those with object IDs greater than 100):

select
substring(object_name(id) + "." +name, 1,25) Name,
 data_pgs(id, doampg) "Data Used",
 reserved_pgs(id, doampg) "Data Res",
 data_pgs(id, ioampg) "Index Used",
 reserved_pgs(id, ioampg) "Index Res"
from sysindexes
where id > 100

SQL Server Performance and Tuning Guide 5-3

Sybase SQL Server Release 11.0.x Using sp_spaceused to Display Object Size

Name Data Used Data Res Index Used Index Res
----------------------- --------- -------- ---------- ---------
authors.authors 223 224 0 0
publishers.publishers 2 8 0 0
roysched.roysched 1 8 0 0
sales.sales 1 8 0 0
salesdetail.salesdetail 1 8 0 0
titleauthor.titleauthor 106 112 0 0
titles.title_id_cix 621 632 7 15
titles.title_ix 0 0 128 136
titles.type_price_ix 0 0 85 95
stores.stores 23 24 0 0
discounts.discounts 3 8 0 0
shipments.shipments 1 8 0 0
blurbs.blurbs 1 8 0 0
blurbs.tblurbs 0 0 7 8

Using sp_spaceused to Display Object Size

The system procedure sp_spaceused reads values stored on the OAM
page for an object to provide a quick report on the space used by an
object.

sp_spaceused titles

name rowtotal reserved data index_size unused
------------ -------- ---------- --------- ----------- --------
titles 5000 1756 KB 1242 KB 440 KB 74 KB

The rowtotal value can be inaccurate at times; not all SQL Server
processes update this value on the OAM page. The commands update
statistics, dbcc checktable, and dbcc checkdb correct the rowtotal value on
the OAM page.

Table 5-1: sp_spaceused output

Column Meaning

rowtotal Reports an estimate of the number of rows. The value is read from
the OAM page. Though not always exact, this estimate is much
quicker and leads to less contention than select count(*).

reserved Reports pages reserved for use by the table and its indexes. It
includes both the used unused pages in extents allocated to the
objects. It is the sum of data, index_size, and unused.

data Reports the kilobytes on pages used by the table.

5-4 Estimating the Size of Tables and Indexes

Using sp_spaceused to Display Object Size Sybase SQL Server Release 11.0.x

If you want to see the size of the indexes reported separately, use this
command:

sp_spaceused titles, 1

 index_name size reserved unused
 -------------------- ---------- ---------- ----------
 title_id_cix 14 KB 1294 KB 38 KB
 title_ix 256 KB 272 KB 16 KB
 type_price_ix 170 KB 190 KB 20 KB

name rowtotal reserved data index_size unused
------------ -------- ---------- --------- ----------- --------
titles 5000 1756 KB 1242 KB 440 KB 74 KB

For clustered indexes, the size value represents the space used for the
root and intermediate index pages. The reserved value includes the
index size and the reserved and used data pages, which are, by
definition, the leaf level of a clustered index.

➤ Note
The “1” in the sp_spaceused syntax indicates that index information should

be printed. It has no relation to index IDs or other information.

Advantages of sp_spaceused

The advantages of sp_spaceused are:

• It provides quick reports without excessive I/O and locking,
since it uses only values in the table and index OAM pages to
return results.

• It shows space reserved for expansion of the object, but not
currently used to store data.

index_size Reports the total kilobytes on pages in use for the indexes.

unused Reports the kilobytes of unused pages in extents allocated to the
object, including the unused pages for the object’s indexes.

Table 5-1: sp_spaceused output (continued)

Column Meaning

SQL Server Performance and Tuning Guide 5-5

Sybase SQL Server Release 11.0.x Using dbcc to Display Object Size

Disadvantages of sp_spaceused

The disadvantages of sp_spaceused are:

• It may report inaccurate count for row total and space usage.

• It does not correct inaccuracies as dbcc does.

• It scans sysindexes, adding traffic to an already busy system table.

• Output is in kilobytes, while most query-tuning activity uses
pages as a unit of measure.

Using dbcc to Display Object Size

Some of the dbcc commands that verify database consistency provide
reports on space used by tables and indexes. Generally, these
commands should not be used on production databases for routine
space checking. They perform extensive I/O and some of them
require locking of database objects. See Table 17-1 on page 17-17 of
the System Administration Guide for a comparison of locking and
performance effects.

If your System Administrator runs regular dbcc checks and saves
results to a file, you can use this output to see the size of your objects
and to track changes in table and index size.

If you want to use dbcc commands to report on table and index size,
both the tablealloc and the indexalloc commands accept the fast option,
which uses information in the OAM page, without performing
checks of all page chains. This reduces both disk I/O and the time
that locks are held on your tables.

Table 5-2: dbcc commands that report space usage

Command Arguments Reports

dbcc tablealloc Table name or
table ID

Pages in specified table and in each
index on the table.

dbcc indexalloc Table name or
table ID and
index ID

Pages in specified index.

dbcc checkalloc Database name,
or current
database if no
argument

Pages in all tables and indexes in the
specified database. At the end of the
report, prints a list of the allocation units
in the database and the number of
extents, used pages, and referenced
pages on each allocation unit.

5-6 Estimating the Size of Tables and Indexes

Using dbcc to Display Object Size Sybase SQL Server Release 11.0.x

dbcc tablealloc(titles)

The default report option of OPTIMIZED is used for this run.
The default fix option of FIX is used for this run.

TABLE: titles OBJID = 208003772
INDID=1 FIRST=2032 ROOT=2283 SORT=1
 Data level: 1. 864 Data Pages in 109 extents.
 Indid : 1. 15 Index Pages in 3 extents.
INDID=2 FIRST=824 ROOT=827 SORT=1
 Indid : 2. 47 Index Pages in 7 extents.
TOTAL # of extents = 119
Alloc page 2048 (# of extent=2 used pages=10 ref pages=10)
Alloc page 2304 (# of extent=1 used pages=7 ref pages=7)
Alloc page 1536 (# of extent=25 used pages=193 ref pages=193)
Alloc page 1792 (# of extent=27 used pages=216 ref pages=216)
Alloc page 2048 (# of extent=29 used pages=232 ref pages=232)
Alloc page 2304 (# of extent=28 used pages=224 ref pages=224)
Alloc page 256 (# of extent=1 used pages=1 ref pages=1)
Alloc page 768 (# of extent=6 used pages=47 ref pages=47)
Total (# of extent=119 used pages=930 ref pages=930) in this
database
DBCC execution completed. If DBCC printed error messages,
contact a user with System Administrator (SA) role.

The dbcc report shows output for titles with a clustered index (the
information starting with “INDID=1”) and a nonclustered index.

For the clustered index, dbcc reports both the amount of space taken
by the data pages themselves, 864 pages in 109 extents, and by the
root and intermediate levels of the clustered index, 15 pages in 3
extents.

For the nonclustered index, it reports the number of pages and
extents used by the index.

Notice that some of the allocation pages are reported more than once
in this output, since the output reports on three objects: the table, its
clustered index, and its nonclustered index.

At the end, it reports the total number of extents used by the table
and its indexes. The OAM pages and distribution pages are included.

You can use dbcc indexalloc to display the information for each index
on the table. This example displays information about the
nonclustered index on titles:

dbcc indexalloc(titles, 2)

SQL Server Performance and Tuning Guide 5-7

Sybase SQL Server Release 11.0.x Using dbcc to Display Object Size

The default report option of OPTIMIZED is used for this run.
The default fix option of FIX is used for this run.

TABLE: titles OBJID = 208003772
INDID=2 FIRST=824 ROOT=827 SORT=1
 Indid : 2. 47 Index Pages in 7 extents.
TOTAL # of extents = 7
Alloc page 256 (# of extent=1 used pages=1 ref pages=1)
Alloc page 768 (# of extent=6 used pages=47 ref pages=47)
Total (# of extent=7 used pages=48 ref pages=48) in this database
DBCC execution completed. If DBCC printed error messages,
contact a user with System Administrator (SA) role.

The dbcc checkalloc command presents summary details for an entire
database. Here is just the section that reports on the titles table:

TABLE: titles OBJID = 208003772
INDID=1 FIRST=2032 ROOT=2283 SORT=1
 Data level: 1. 864 Data Pages in 109 extents.
 Indid : 1. 15 Index Pages in 3 extents.
INDID=2 FIRST=824 ROOT=827 SORT=1
 Indid : 2. 47 Index Pages in 7 extents.
TOTAL # of extents = 119

Advantages of dbcc

The advantages of using dbcc commands for checking the size of
objects are:

• dbcc reports the space used for each index, and for the non-leaf
portion of a clustered index.

• dbcc reports are in pages, which is convenient for most tuning
work.

• dbcc reports the number of extents for each object, which is useful
when estimating I/O using a 16K memory pool.

• dbcc reports are accurate. When dbcc completes, it updates the
information on which sp_spaceused bases its reports.

• Using dbcc tablealloc or indexalloc, you can see how tables or indexes
are spread across allocation units.

• You should run regular dbcc consistency checks of your
databases. If you save the output to files, using this information
to track space usage does not impact server performance.

5-8 Estimating the Size of Tables and Indexes

Using sp_estspace to Estimate Object Size Sybase SQL Server Release 11.0.x

Disadvantages of dbcc

The disadvantages of using dbcc commands for size checking are:

• dbcc can cause disk, data cache, and lock contention with other
activities on the server.

• dbcc does not include space used by text or image columns.

• dbcc does not report reserved pages, that is, pages that are in
extents that are allocated to the object, but which do not contain
data. These pages cannot be used for other objects. It is possible to
determine the number of reserved pages by multiplying the
number of extents used by eight and comparing the result to the
total number of used pages that dbcc reports.

Using sp_estspace to Estimate Object Size

sp_spaceused and dbcc commands report on actual space use. The
system procedure sp_estspace can help you plan for future growth of
your tables and indexes. This procedure uses information in the
system tables (sysobjects, syscolumns, and sysindexes) to determine the
length of data and index rows. It estimates the size for the table and
for any indexes that exist. It does not look at the actual size of the
data in the tables. You provide an estimate of the number of rows.

 To use sp_estspace:

• Create the table, if it does not exist

• Create any indexes on the table

• Execute the procedure, estimating the number of rows that the
table will hold

The output reports the number of pages and bytes for the table and
for each level of the index.

The following example estimates the size of the titles table with
500,000 rows, a clustered index, and two nonclustered indexes:

sp_estspace titles, 500000

SQL Server Performance and Tuning Guide 5-9

Sybase SQL Server Release 11.0.x Using sp_estspace to Estimate Object Size

name type idx_level Pages Kbytes
--------------------- ------------ --------- -------- --------
titles data 0 50002 100004
title_id_cix clustered 0 302 604
title_id_cix clustered 1 3 6
title_id_cix clustered 2 1 2
title_ix nonclustered 0 13890 27780
title_ix nonclustered 1 410 819
title_ix nonclustered 2 13 26
title_ix nonclustered 3 1 2
type_price_ix nonclustered 0 6099 12197
type_price_ix nonclustered 1 88 176
type_price_ix nonclustered 2 2 5
type_price_ix nonclustered 3 1 2

Total_Mbytes

 138.30

name type total_pages time_mins
--------------------- ------------ ------------ ------------
title_id_cix clustered 50308 250
title_ix nonclustered 14314 91
type_price_ix nonclustered 6190 55

sp_estspace has additional features to allow you to specify a fillfactor,
average size of variable length fields and text fields, and I/O speed.
For more information, see the SQL Server Reference Manual.

Advantages of sp_estspace

The advantages of using sp_estspace to estimate the size of objects are:

• sp_estspace provides a quick, easy way to plan for table and index
growth.

• sp_estspace provides a page count at each index level and helps
you estimate the number of index levels.

• sp_estspace estimates the amount of time needed to create the
index.

• sp_estspace can be used to estimate future disk space, cache space,
and memory requirements.

5-10 Estimating the Size of Tables and Indexes

Using Formulas to Estimate Object Size Sybase SQL Server Release 11.0.x

Disadvantages of sp_estspace

The disadvantages of using sp_estspace to estimate the size of objects
are:

• Returned sizes are only estimates and may differ from actual
sizes due to fillfactors, page splitting, actual size of variable
length fields, and other factors.

• Index creation times can vary widely depending on disk speed,
the use of extent I/O buffers, and system load.

Using Formulas to Estimate Object Size

The following formulas help you estimate the size of tables and
indexes in your database. The amount of overhead in tables and
indexes that contain variable-length fields is greater than tables that
contain only fixed-length fields, so two sets of formulas are required.

The basic process involves calculating the number of bytes of data,
plus overhead, and dividing that number into the number of bytes
available on a data page. Due to page overhead, on a 2K data page,
2016 bytes are available for data.

➤ Note
Do not confuse this figure with the maximum row size, which is 1960 bytes,

due to overhead in other places in SQL Server.

For the most accurate estimate, round down divisions that calculate
the number of rows per page (rows are never split across pages) and
round up divisions that calculate the number of pages.

Factors That Can Change Storage Size

Using fillfactor or max_rows_per_page in your create index statement
changes some of the equations. See “Effects of Setting fillfactor to 100
Percent” on page 5-24, and “max_rows_per_page Value” on page
5-26.

These formulas use the maximum size for variable length character
and binary data. See “Using Average Sizes for Variable Fields” on
page 5-24 for instructions if you want to use the average size instead
of the maximum size.

SQL Server Performance and Tuning Guide 5-11

Sybase SQL Server Release 11.0.x Using Formulas to Estimate Object Size

If your table includes text or image datatypes, use 16 (the size of the
text pointer that is stored in the row) in the calculations below. Then
see “text and image Data Pages” on page 5-26.

If the configuration parameter page utilization percent is set to less than
100, SQL Server may allocate new extents before filling all pages on
the allocated extents. This does not change the number of pages that
an object uses, but leaves empty pages in extents allocated to the
object. See “page utilization percent” on page 11-29 in the System
Administration Guide.

Storage Sizes for Datatypes

The storage sizes for SQL Server datatypes are shown in the
following table:

Table 5-3: Storage sizes for SQL Server datatypes

Datatype Size

char Defined size

nchar Defined size * @@ncharsize

varchar Actual number of characters

nvarchar Actual number of characters *
@@ncharsize

binary Defined size

varbinary Data size

int 4

smallint 2

tinyint 1

float 4 or 8, depending on precision

double precision 8

real 4

numeric 2–17, depending on precision and scale

decimal 2–17, depending on precision and scale

money 8

smallmoney 4

datetime 8

smalldatetime 4

5-12 Estimating the Size of Tables and Indexes

Using Formulas to Estimate Object Size Sybase SQL Server Release 11.0.x

The storage size for a numeric or decimal column depends on its
precision. The minimum storage requirement is 2 bytes for a 1- or
2-digit column. Storage size increases by 1 byte for each additional 2
digits of precision, up to a maximum of 17 bytes.

Any columns defined as NULL are considered variable length
columns, since they involve the overhead associated with the
variable length columns.

All of the calculations in the examples below are based on the
maximum size for varchar, nvarchar, and varbinary data—the defined
size of the columns. They also assume that the columns were defined
as NOT NULL. If you want to use average values instead, see “Using
Average Sizes for Variable Fields” on page 5-24.

The formulas and examples are divided into two sections:

• Steps 1–6 outline the calculations for a table with a clustered
index, giving the table size and the size of the index tree. The
example that follows Step 6 illustrates the computations on a
9,000,000-row table.

• Steps 7–12 outline the calculations for computing the space
required by nonclustered indexes, followed by another example
on the 9,000,000-row table.

Calculating the Size of Tables and Clustered Indexes

The formulas that follow show how to calculate the size of tables and
clustered indexes. If your table does not have clustered indexes, skip
Steps 3, 4, and 5. Once you compute the number of data pages in Step
2, go to Step 6 to add the number of OAM pages.

bit 1

text 16 bytes + 2K * number of pages used

image 16 bytes + 2K * number of pages used

timestamp 8

Table 5-3: Storage sizes for SQL Server datatypes (continued)

Datatype Size

SQL Server Performance and Tuning Guide 5-13

Sybase SQL Server Release 11.0.x Using Formulas to Estimate Object Size

Step 1: Calculate the Data Row Size

Rows that store variable-length data require more overhead than
rows that contain only fixed-length data, so there are two separate
formulas for computing the size of a data row.

Use the first formula if all of the columns are fixed length, and
defined as NOT NULL. Use the second formula if the row contains
variable-length columns or columns defined as NULL.

Only Fixed-Length Columns

Use this formula if the table contains only fixed-length columns:

Some Variable-Length Columns

Use this formula if the table contains variable-length columns, or
columns that allow null values:

4 (Overhead)

+ Sum of bytes in all fixed-length columns

= Data row size

4 (Overhead)

+ Sum of bytes in all fixed-length columns

+ Sum of bytes in all variable-length columns

= Subtotal

+ (Subtotal / 256) + 1 (Overhead)

+ Number of variable-length columns + 1

+ 2 (Overhead)

= Data row size

5-14 Estimating the Size of Tables and Indexes

Using Formulas to Estimate Object Size Sybase SQL Server Release 11.0.x

Step 2: Compute the Number of Data Pages

Step 3: Compute the Size of Clustered Index Rows

Index rows containing variable-length columns require more
overhead than index rows containing only fixed-length values. Use
the first formula if all the keys are fixed length. Use the second
formula if the keys include variable-length columns or allow null
values.

Only Fixed-Length Columns

Some Variable-Length Columns

Note that the results of the division (Subtotal/256) are rounded
down.

2016/Data row size = Number of data rows per page

Number of rows/Rows per page = Number of data pages required

5 (Overhead)

+ Sum of bytes in the fixed-length index keys

= Clustered row size

5 (Overhead)

+ Sum of bytes in the fixed-length index keys

+ Sum of bytes in variable-length index keys

= Subtotal

+ (Subtotal / 256) + 1 (Overhead)

+ 2 (Overhead)

= Clustered index row size

SQL Server Performance and Tuning Guide 5-15

Sybase SQL Server Release 11.0.x Using Formulas to Estimate Object Size

Step 4: Compute the Number of Clustered Index Pages

If the result for the number of index pages at the next level is greater
than 1, repeat the following division Step, using the quotient as the
next dividend, until the quotient equals 1, which means that you
have reached the root level of the index:

Step 5: Compute the Total Number of Index Pages

Add the number of pages at each level to determine the total number
of pages in the index:

Step 6: Calculate Allocation Overhead and Total Pages

Each table and each index on a table has an object allocation map
(OAM). The OAM is stored on pages allocated to the table or index.
A single OAM page holds allocation mapping for between 2,000 and
63,750 data or index pages.

In the clustered index example that follows, there are 750,000 data
pages, requiring between 12 and 376 OAM pages. The clustered
index has 3411 pages and require 1 or 2 OAM pages. In the
nonclustered index example, the index has 164,137 pages and
requires between 3 and 83 OAM pages. In most cases, the number of
OAM pages required is closer to the minimum value. See “Why the
Range?” on page 3-8 for more information.

(2016 / Clustered row size) - 2 = No. of clustered index rows per page

No. of rows / No. of CI rows per page = No. of index pages at next level

No. of index pages
at last level

/ No. of clustered
index rows per page

= No. of index pages at
next level

Index Levels Pages

2

1 +

0 +

Total number of index pages

5-16 Estimating the Size of Tables and Indexes

Using Formulas to Estimate Object Size Sybase SQL Server Release 11.0.x

To calculate the number of OAM pages for the table, use:

To calculate the number of OAM pages for the index, use:

Total Pages Needed

Finally, add the number of OAM pages to the earlier totals to
determine the total number of pages required:

Example: Calculating the Size of a 9,000,000-Row Table

The following example computes the size of the data and clustered
index for a table containing:

• 9,000,000 rows

• Sum of fixed-length columns = 100 bytes

• Sum of 2 variable-length columns = 50 bytes

• Clustered index key, fixed length, 4 bytes

Number of reserved data pages / 63,750 = Minimum OAM pages

Number of reserved data pages / 2000 = Maximum OAM pages

Number of reserved index pages/ 63,750 = Minimum OAM pages

Number of reserved index pages/ 2000 = Maximum OAM pages

Minimum Maximum

Clustered index pages

OAM pages + +

Data pages + +

OAM pages + +

Total

SQL Server Performance and Tuning Guide 5-17

Sybase SQL Server Release 11.0.x Using Formulas to Estimate Object Size

Calculating the Data Row Size (Step 1)

The table contains variable-length columns.

Calculating the Number of Data Pages (Step 2)

In the first part of this Step, the number of rows per page is rounded
down:

Calculating the Clustered Index Row Size (Step 3)

Calculating the Number of Clustered Index Pages (Step 4)

4 (Overhead)

+ 100 Sum of bytes in all fixed-length columns

+ 50 Sum of bytes in all variable-length columns

154 = Subtotal

+ 1 (Subtotal / 256) + 1 (overhead)

+ 3 Number of variable-length columns + 1

+ 2 (Overhead)

160 = Data row size

2016/160 = 12 Data rows per page

9,000,000/12 = 750,000 Data pages

5 (Overhead)

+ 4 Sum of bytes in the fixed-length index keys

9 = Clustered Row Size

(2016/9) - 2 = 222 Clustered Index Rows Per Page

750,000/222 = 3379 Index Pages (Level 0)

 3379/222 = 16 Index Pages (Level 1)

 16/222 = 1 Index Page (Level 2)

5-18 Estimating the Size of Tables and Indexes

Using Formulas to Estimate Object Size Sybase SQL Server Release 11.0.x

Calculating the Total Number of Index Pages (Step 5)

Calculating the Number of OAM Pages and Total Pages (Step 6)

Both the table and the clustered index require one or more OAM
Pages.

For Data Pages:

For Index Pages:

Total Pages Needed:

Index Levels Pages Rows

2 1 16

1 + 16 3379

0 + 3379 750000

Index total:

Data total:

3396

750000 9000000

750,000/63,750 = 12 (minimum)

750,000/2000 = 376 (maximum)

3379/63,750 = 1 (minimum)

3379/2000 = 2 (maximum)

Minimum Maximum

Clustered index pages 3379 3379

OAM pages 1 2

Data pages 750000 750000

OAM pages 12 376

Total 753392 753757

SQL Server Performance and Tuning Guide 5-19

Sybase SQL Server Release 11.0.x Using Formulas to Estimate Object Size

Calculating the Size of Nonclustered Indexes

Step 7: Calculate the Size of the Leaf Index Row

Index rows containing variable-length columns require more
overhead than index rows containing only fixed-length values. Use
the first formula if all the keys are fixed length. Use the second
formula if the keys include variable-length columns or allow null
values.

Fixed-Length Keys Only

Use this formula if the index contains only fixed-length keys:

Some Variable-Length Keys

Use this formula if the index contains any variable-length keys:

Step 8: Calculate the Number of Leaf Pages in the Index

7 (Overhead)

+ Sum of Fixed-Length Keys

= Size of Leaf Index Row

9 (Overhead)

+ Sum of length of fixed-length keys

+ Sum of length of variable-length keys

+ Number of variable-length keys + 1

= Subtotal

+ (Subtotal / 256) + 1 (overhead)

= Size of leaf index row

2016/ Size of leaf index row = No. of leaf rows per page

No. of rows in table / No. of leaf rows per page = No. of leaf pages

5-20 Estimating the Size of Tables and Indexes

Using Formulas to Estimate Object Size Sybase SQL Server Release 11.0.x

Step 9: Calculate the Size of the Non-Leaf Rows

Step 10: Calculate the Number of Non-Leaf Pages

If the number of index pages at the next level above is greater than 1,
repeat the following division step, using the quotient as the next
dividend, until the quotient equals 1, which means that you have
reached the root level of the index:

Step 11: Calculate the Total Number of Non-Leaf Index Pages

Add the number of pages at each level to determine the total number
of pages in the index:

Size of leaf index row

+ 4 Overhead

= Size of non-leaf row

(2016 / Size of non-leaf row) - 2 = No. of non-leaf index rows per page

No. of leaf pages at
last level

/ No. of non-leaf index
rows per page

= No. of index pages at
next level

No. of Index Pages
At Last Level

/ No. of Non-Leaf
Index Rows per Page

= No. of Index Pages at
Next Level

Index Levels Pages

4

3 +

2 +

1 +

0 +

Total number of 2K data pages used

SQL Server Performance and Tuning Guide 5-21

Sybase SQL Server Release 11.0.x Using Formulas to Estimate Object Size

Step 12: Calculate Allocation Overhead and Total Pages

Total Pages Needed

Add the number of OAM pages to the total from Step 11 to determine
the total number of index pages:

Example: Calculating the Size of a Nonclustered Index

The following example computes the size of a nonclustered index on
the 9,000,000-row table used in the preceding example. There are two
keys, one fixed length and one variable length.

• 9,000,000 rows

• Sum of fixed-length columns = 100 bytes

• Sum of 2 variable-length columns = 50 bytes

• Composite nonclustered index key:

- Fixed length column, 4 bytes

- Variable length column, 20 bytes

Number of index pages / 63,750 = Minimum OAM pages

Number of index pages / 2000 = Maximum OAM pages

Minimum Maximum

Nonclustered index pages

OAM pages + +

Total

5-22 Estimating the Size of Tables and Indexes

Using Formulas to Estimate Object Size Sybase SQL Server Release 11.0.x

Calculate the Size of the Leaf Index Row (Step 7)

The index contains variable-length keys:

Calculate the Number of Leaf Pages (Step 8)

Calculate the Size of the Non-Leaf Rows (Step 9)

Calculate the Number of Non-Leaf Pages (Step 10)

9 (Overhead)

+ 4 Sum of length of fixed-length keys

+ 20 Sum of length of variable-length keys

+ 2 Number of variable-length keys + 1

35 = Subtotal

+ 1 (Subtotal / 256) + 1 (overhead)

36 = Size of Leaf Index Row

2016/36 = 56 Nonclustered leaf rows per page

9,000,000/56 = 160,715 Leaf pages

36 Size of leaf index row (from Step 7)

+ 4 Overhead

40 = Size of non-leaf index row

(2016/40) - 2 = 48 Non-leaf index rows per page

160715/48 = 3349 Index pages, level 1

3348 /48 = 70 Index pages, level 2

 70/48 = 2 Index pages, level 3

2/48 = 1 Index page, level 4

SQL Server Performance and Tuning Guide 5-23

Sybase SQL Server Release 11.0.x Using Formulas to Estimate Object Size

Totals (Step 11)

OAM Pages Needed (Step 12)

Total Pages Needed

Other Factors Affecting Object Size

In addition to the effects of data modifications over time, other
factors can affect object size and size estimates:

• The fillfactor value used when an index is created

• Whether computations used average row size or maximum row
size

• Very small text rows

• max_rows_per_page value

• Use of text and image data

Index Levels Pages Rows

4 1 2

3 2 70

2 70 3348

1 3349 160715

0 160715 9000000

164137

164137 /63,750 = 3 (minimum)

164137 /2000 = 83 (maximum)

Minimum Maximum

Index pages 164137 164137

OAM pages 3 83

Total pages 164140 164220

5-24 Estimating the Size of Tables and Indexes

Using Formulas to Estimate Object Size Sybase SQL Server Release 11.0.x

Effects of Setting fillfactor to 100 Percent

With the default fillfactor of 0, the index management process leaves
room for two additional rows on each index page when you first
create a new index. When you set fillfactor to 100 percent, it no longer
leaves room for these rows. The only effect on these calculations is on
calculating the number of clustered index pages (Step 4) and
calculating the number of non-leaf pages (Step 9). Both of these
calculations subtract 2 from the number of rows per page. Eliminate
the -2 from these calculations.

➤ Note
Fillfactor affects size at index creation time. Fillfactors are not maintained

as tables are updated. Use these adjustments for read-only tables.

Other fillfactor Values

Other values for fillfactor reduce the number of rows per page on data
pages and leaf index pages. To compute the correct values when
using fillfactor, multiply the size of the available data page (2016) by
the fillfactor. For example, if your fillfactor is 75 percent, your data page
would hold 1471 bytes. Use this value in place of 2016 when you
calculate the number of rows per page. See “Step 2: Compute the
Number of Data Pages” on page 5-14 and “Step 8: Calculate the
Number of Leaf Pages in the Index” on page 5-19.

Distribution Pages

Distribution pages are created when you create an index on existing
data and when you run update statistics. A distribution page occupies
one full data page. Distribution pages are essential for proper
functioning of the optimizer.

Using Average Sizes for Variable Fields

The formulas use the maximum size of the variable-length fields.

One way to determine the average size of fields on an existing table
is:

select avg(datalength(column_name))
 from table_name

SQL Server Performance and Tuning Guide 5-25

Sybase SQL Server Release 11.0.x Using Formulas to Estimate Object Size

This query performs a table scan, which may not be acceptable in a
production system or for a very large table. You can limit the number
of rows it searches by placing the column value in a temporary table
with set rowcount, and running the query on the temporary table.

You can use the average value in Steps 1 and 4 in calculating table
size, and in Step 6 in calculating the nonclustered index size. You will
need slightly different formulas:

In Step 1

Use the sum of the average length of the variable length columns
instead of the sum of the defined length of the variable length
columns to determine the average data row size.

In Step 2

Use the average data row size in the first formula.

In Step 3

You must perform the addition twice. The first time, calculate the
maximum index row size, using the given formula. The second time,
calculate the average index row size, substituting the sum of the
average number of bytes in the variable-length index keys for the
sum of the defined number of bytes in the variable-length index
keys.

In Step 4

Substitute this formula for the first formula in Step 4, using the two
length values:

In Step 6

You must perform the addition twice. The first time, calculate the
maximum leaf index row size, using the given formula. The second
time, calculate the average leaf index row size, substituting the
average number of bytes in the variable-length index keys for the
sum of byte in the variable-length index keys.

(2016 - 2 * maximum_length) / average_length = No. of clustered index
rows per page

5-26 Estimating the Size of Tables and Indexes

Using Formulas to Estimate Object Size Sybase SQL Server Release 11.0.x

In Step 7

Use the average leaf index row size in the first division procedure.

In Step 8

Use the average leaf index row size.

In Step 9

Substitute this formula for the first formula in Step 9, using the
maximum and averages calculated in Step 6:

Very Small Rows

SQL Server cannot store more than 256 data or index rows on a page.
Even if your rows are extremely short, the minimum number of data
pages will be:

max_rows_per_page Value

The max_rows_per_page value (specified by create index, create table, alter
table, or sp_chgattrribute) limits the number of rows on a data page.

To compute the correct values when using max_rows_per_page, use the
max_rows_per_page value or the computed number of data rows per
page, whichever is smaller, in the first formula in Steps 2 and 8.

text and image Data Pages

Each text or image column stores a 16-byte pointer in the data row
with the datatype varbinary(16). Each text or image column that is
initialized requires at least 2K (one data page) of storage space.

text and image columns are designed to store “implicit” null values,
meaning that the text pointer in the data row remains null, and there
is no text page initialized for the value, saving 2K of storage space.

(2016 - 2 * Maximum_length) / Average_length= No. of non-leaf index rows
per page

Number of Rows / 256 = Number of Data Pages Required

SQL Server Performance and Tuning Guide 5-27

Sybase SQL Server Release 11.0.x Using Formulas to Estimate Object Size

If a text or image column is defined to allow null values, and the row
is created with an insert statement that includes NULL for the text or
image column, the column is not initialized, and the storage is not
allocated.

If a text or image column is changed in any way with update, then the
text page is allocated. Of course, inserts or updates that place actual
data in a column initialize the page. If the text or image column is
subsequently set to NULL, a single page remains allocated.

Each text or image page stores 1800 bytes of data. To calculate the
number of text chain pages that a particular entry will use, use this
formula:

The result should be rounded up in all cases; that is, a data length of
1801 bytes requires two 2K pages.

Advantages of Using Formulas to Estimate Object Size

The advantages of using the formulas are:

• You learn more details of the internals of data and index storage.

• The formulas provide flexibility for specifying averages sizes for
character or binary columns.

• While computing the index size, you see how many levels each
index has, which helps estimate performance.

Disadvantages of Using Formulas to Estimate Object Size

The disadvantages of using the formulas are:

• The estimates are only as good as your estimates of average size
for variable length columns.

• The multistep calculations can be prone to error.

• Actual size may be different, based on use.

Data length / 1800 = Number of 2K pages

5-28 Estimating the Size of Tables and Indexes

Using Formulas to Estimate Object Size Sybase SQL Server Release 11.0.x

SQL Server Performance and Tuning Guide 6-1

6 Indexing for Performance 6.

Introduction

This chapter introduces the basic query analysis tools that can help
you choose appropriate indexes, and discusses index selection
criteria for point queries, range queries, and joins.

This chapter discusses:

• Indexing and performance

• Index limits

• Tools for index tuning, especially set io statistics

• How to estimate I/O

• How indexes are used to avoid sorting

• How to choose indexes

• The distribution page

• Maintaining indexes

• Additional tips and techniques

How Indexes Can Affect Performance

Carefully considered indexes, built on top of a good database design,
forms the core of a high performance SQL Server installation.
However, adding indexes without proper analysis can reduce the
overall performance of your system. Insert, update, and delete
operations can take longer when a large number of indexes need to
be updated. In general, if there is not a good reason to have an index,
it should not be there.

Analyze your application workload and create indexes as necessary
to improve the performance of the most critical processes.

The SQL Server optimizer uses a probabilistic costing model. It
analyzes the cost of different possible query plans and chooses the
plan that has the least cost. Since much of the cost of executing a
query consists of disk I/O, creating the correct set of indexes for your
applications means that the optimizer can use indexes to:

• Avoid table scans when accessing data

6-2 Indexing for Performance

How Indexes Can Affect Performance Sybase SQL Server Release 11.0.x

• Target specific data pages that contain specific values in a point
query

• Establish upper and lower bounds for reading data in a range
query

• Avoid table access completely, when an index covers a query

• Use ordered data to avoid sorts

In addition, you can create indexes to enforce the uniqueness of data
and to randomize the storage location of inserts.

A primary goal of improving performance with indexes is avoiding
table scans. In a table scan, every page of a table must be read from
disk. Since the optimizer cannot know if you have one row, or
several, that match the search arguments, it can’t stop when it finds a
matching row; it must read every row of the table.

If a query is searching for a unique value in a table that has 600 data
pages, this requires 600 disk reads. If an index points to the data
value, the query could be satisfied with two or three reads, a
performance improvement of 200 percent to 300 percent. On a
system with a 12-ms. disk, this is a difference of several seconds
compared to less than a second. Even if this response time is
acceptable for the query in question, heavy disk I/O by one query
has a negative impact on overall throughput.

Table scans may occur:

• When there is no index on the search arguments for a query

• When there is an index, but the optimizer determines that the
index is not useful

• When there are no search arguments

Symptoms of Poor Indexing

Lack of indexing, or incorrect indexing, results in poor query
performance. Some of the major indications are:

• A select statement takes too long.

• A join between two or more tables takes an extremely long time.

• Select operations perform well, but data modification processes
perform poorly.

• Point queries (for example, “where colvalue = 3”) perform well,
but range queries (for example, “where colvalue > 3 and colvalue
< 30”) perform poorly.

SQL Server Performance and Tuning Guide 6-3

Sybase SQL Server Release 11.0.x How Indexes Can Affect Performance

Underlying Problems

The underlying problems relating to indexing and poor performance
are:

• No indexes are assigned to a table, so table scans are always used
to retrieve data.

• An existing index is not selective enough for a particular query, so
it is not used by the optimizer.

• The index does not support a critical range query, so table scans
are required.

• Too many indexes are assigned to a table, so data modifications
are slow.

• The index key is too large, so using the index generates high I/O.

Each of these problems is described in the following sections.

Lack of Indexes Is Causing Table Scans

If select operations and joins take too long, it is likely that an
appropriate index does not exist or is not being used by the
optimizer. Analyzing the query can help determine if another index
is needed, if an existing index can be modified, or if the query can be
modified to use an existing index. If an index exists, but is not being
used, careful analysis of the query and the values used is required to
determine the source of the problem.

Index Is Not Selective Enough

An index is selective if it helps the optimizer find a particular row or
a set of rows. An index on a unique identifier such as a social security
number is highly selective, since it lets the optimizer pinpoint a
single row. An index on a non-unique entry such as sex (M, F) is not
very selective, and the optimizer would use such an index only in
very special cases.

Index Does Not Support Range Queries

Generally, clustered indexes and covering indexes help optimize
range queries. Range queries that reference the keys of noncovering
nonclustered indexes use the index for ranges that return a limited
number of rows. As the range and the number of rows the query

6-4 Indexing for Performance

How Indexes Can Affect Performance Sybase SQL Server Release 11.0.x

returns increases, however, using a nonclustered index to return the
rows can cost more than a table scan.

As a rule of thumb, if access via a nonclustered index returns more
rows than there are pages in the table, the index is more costly than
the table scan (using 2K I/O on the table pages). If the table scan can
use 16K I/O, the optimizer is likely to choose the table scan when the
number of rows to be returned exceeds the number of I/Os (pages
divided by 8).

➤ Note
The optimizer costs both physical and logical I/O for the query, as well as

other costs. The rule of thumb above does not describe how the optimizer

determines query costs.

Too Many Indexes Slow Data Modification

If data modification performance is poor, you may have too many
indexes.While indexes favor select operations, they slow down data
modifications. Each time an insert, update, or delete operation affects
an index key, the leaf level, and sometimes higher levels, of a
nonclustered index need to be updated. Analyze the requirements
for each index and try to eliminate those that are unnecessary or
rarely used.

Index Entries Are Too Large

Large index entries cause large indexes, so try to keep them as small
as possible. You can create indexes with keys up to 256 bytes, but
these indexes can store very few rows per index page, which
increases the amount of disk I/O needed during queries. The index
has more levels, and each level has more pages. Nonmatching index
scans can be very expensive.

The following example uses sp_estspace to demonstrate how the
number of index pages and leaf levels required increases with key
size. It creates a nonclustered indexes using 10-, 20-, and 40-character
keys.

create table demotable (c1 char(10),
 c2 char(20),
 c4 char(40))

create index t1 on demotable(c1)

SQL Server Performance and Tuning Guide 6-5

Sybase SQL Server Release 11.0.x Index Limits and Requirements

create index t2 on demotable(c2)

create index t4 on demotable(c4)

sp_estspace demotable, 500000

name type idx_level Pages Kbytes
-------------- ------------ --------- ------- -------
demotable data 0 15204 37040
t1 nonclustered 0 4311 8623
t1 nonclustered 1 47 94
t1 nonclustered 2 1 2
t2 nonclustered 0 6946 13891
t2 nonclustered 1 111 222
t2 nonclustered 2 3 6
t2 nonclustered 3 1 2
t4 nonclustered 0 12501 25002
t4 nonclustered 1 339 678
t4 nonclustered 2 10 20
t4 nonclustered 3 1 2

Total_Mbytes

 83.58

name type total_pages time_mins
-------------- ------------ ------------ ------------
t1 nonclustered 4359 25
t2 nonclustered 7061 34
t4 nonclustered 12851 53

The output shows that the indexes for the 10-column and 20-column
keys each have three levels, while the 40-column key requires a
fourth level.

The number of pages required is over 50 percent higher at each level.
A nonmatching index scan on the leaf level of t2 would require 6946
disk reads, compared to 4311 for the index on t1.

Index Limits and Requirements

The following limits apply to indexes on SQL Server:

• You can create only one clustered index per table, since the data
for a clustered index is stored in order by the index key.

• You can create a maximum of 249 nonclustered indexes per table.

• A key can be made up of multiple columns. The maximum is 16
columns. The maximum number of bytes per index key is 256.

6-6 Indexing for Performance

Tools for Query Analysis and Tuning Sybase SQL Server Release 11.0.x

• When you create a clustered index, SQL Server requires an
additional 120 percent of the table size in the database. It must
create a copy of the table and allocate space for the root and
intermediate pages for the index. Note that 120 percent is a rule of
thumb; if you have very long keys, you may need even more
space.

• The referential constraints unique and primary key create unique
indexes to enforce their restrictions on the keys. By default, unique
constraints create nonclustered indexes and primary key constraints
create clustered indexes.

Tools for Query Analysis and Tuning

The query analysis tools that you use most often while tuning
queries and indexes are listed in Table 6-1.

Table 6-1: Tools for managing index performance

Tool Function

set showplan on Shows the query plan for a query, including the indexes
selected, join order, and worktables. See Chapter 8,
“Understanding Query Plans.”

set statistics io on Shows how many logical and physical reads and writes
are performed to process the query. See “Indexes and I/O
Statistics” on page 6-8.

set statistics time on Shows how long it takes to execute the query.

set noexec on Usually used with set showplan on, this command
suppresses execution of the query. You see the plan the
optimizer would choose, but the query is not executed.
noexec is useful when the query would return very long
results or could cause performance problems on a
production system. Note that output from statistics io is
not shown when noexec is in effect (since the query does
not perform I/O).

dbcc traceon (302) This special trace flag lets you see the calculations the
optimizer uses to determine whether indexes should be
used. See “dbcc traceon 302” on page 9-14.

SQL Server Performance and Tuning Guide 6-7

Sybase SQL Server Release 11.0.x Tools for Query Analysis and Tuning

Tools that provide information on indexes or help in tuning indexes
are listed in Table 6-2.

The commands that provide information on space usage are
described in Chapter 5, “Estimating the Size of Tables and Indexes.”

Table 6-3 lists additional tools.

The tools listed in Table 6-3 are described in Chapter 9, “Advanced
Optimizing Techniques.”

Figure 6-1 on page 6-8 shows how many of these tools relate to the
process of running queries on SQL Server.

Table 6-2: Additional tools for managing index performance

Tool Function

sp_configure fillfactor Sets or displays the default fillfactor for index
pages.

sp_help, sp_helpindex Provides information on indexes that exist for a
table.

sp_estspace Provides estimates of table and index size, the
number of pages at each level of an index, and
the time needed to create each index.

sp_spaceused Provides information about the size of tables and
its indexes.

update statistics Updates the statistics kept about distribution and
density of keys in an index.

Table 6-3: Advanced tools for query tuning

Tool Function

set forceplan Forces the query to use the tables in the order
specified in the from clause.

set table count Increases the number of tables optimized at once.

select, delete, update clauses:

(index...prefetch...mru_lru)

Specifies the index, I/O size, or cache strategy to
use for the query.

set prefetch Toggles prefetch for query tuning
experimentation.

sp_cachestrategy Sets status bits to enable or disable prefetch and
fetch-and-discard cache strategy.

6-8 Indexing for Performance

Indexes and I/O Statistics Sybase SQL Server Release 11.0.x

Figure 6-1: Query processing analysis tools and query processing

Using sp_sysmon to Observe the Effects of Index Tuning

Use the system procedure sp_sysmon (or the separate product, SQL
Server Monitor) as you work on index tuning. Look at the output for
improved cache hit ratios, a reduction in the number of physical
reads, and fewer context switches for physical reads.

For more information about using sp_sysmon see Chapter 19,
“Monitoring SQL Server Performance with sp_sysmon,” especially
the section “Index Management” on page 19-32.

Indexes and I/O Statistics

The statistics io option of the set command reports information about
physical and logical I/O and the number of times a table was
accessed.

Reports from set statistics io follow the query results and provide
actual I/O performed by the query.

Compile

Optimize

Parse

Query

Results

Execute

Optimizer
“eavesdropping”:

dbcc traceon
(302)

Query Plan:

set showplan on

Report on I/O:

set statistics io
Skip execution,
do not print
results:

set no exec

Measure time from
parse to results:

set statistics time on

Change optimizer choices:

* set forceplan on

* set table count on

* select...index...prefetch...
mru|lru

* set prefetch size
Optimize

Compile

SQL Server Performance and Tuning Guide 6-9

Sybase SQL Server Release 11.0.x Indexes and I/O Statistics

set statistics io provides the following information for queries:

Here is a sample query:

select title
from titles
where title_id = "T5652"

If there is no index on title_id, the output for the table scan reports
these values, using 2K I/O:

Table: titles scan count 1, logical reads: 624, physical reads: 624
Total writes for this command: 0

With a clustered index on title_id, the output shows:

Table: titles scan count 1, logical reads: 3, physical reads: 2
Total writes for this command: 0

Adding the index improves performance by a factor of 200.

Scan Count

The scan count shows the number of times a table or index was used
in the query. It does not necessarily mean that a table scan was
performed. A scan can represent any of these access methods:

• A table scan.

• An access via a clustered index. Each time the query starts at the
root page of the index, and follows pointers to the data pages, it is
counted.

• An access via a nonclustered index. Each time the query starts at
the root page of the index, and follows pointers to the leaf level of
the index (for a covered query) or to the data pages, it is counted.

You need to use showplan, as described in Chapter 8, “Understanding
Query Plans,” to determine which access method is used.

Table 6-4: Values reported by set statistics io

Output Meaning

scan count Number of times an index or table was searched

logical reads Number of times a page is referenced in cache

physical reads Number of reads performed from disk

Total writes Number of writes to disk

6-10 Indexing for Performance

Indexes and I/O Statistics Sybase SQL Server Release 11.0.x

Queries Reporting Scan Count of 1

Examples of queries that return a scan count of 1 are:

• A point query:

select title_id
from titles
 where title_id = "T55522"

• A range query:

select au_lname, au_fname
 from authors
 where au_lname > "Smith"
 and au_lname < "Smythe"

If the columns in the where clauses of these queries are indexed, they
use the indexes to probe the tables; otherwise, they perform table
scans. But in either case, they require only a single probe of the table
to return the required rows.

Queries Reporting Scan Count Greater Than 1

Examples of queries that return larger scan count values are:

• Queries that have indexed where clauses connected by or report a
scan for each or clause; for example, with an index on title_id, and
another on pub_id:

select title_id
from titles
 where title_id = "T55522"
 or pub_id = "P302"

Table: titles scan count 2, logical reads: 8, physical reads: 1

Note that if any or clause is not indexed, the query performs a
single table scan.

• In joins, inner tables are scanned once for each qualifying row in
the outer table. In the following example, the outer table,
publishers, has three publishers with the state “NY”, so the inner
table, titles, reports a scan count of 3:

select title_id
from titles t, publishers p
where t.pub_id = p.pub_id
 and p.state = "NY"

Table: titles scan count 3, logical reads: 1872, physical reads: 624
Table: publishers scan count 1, logical reads: 2, physical reads: 2
Total writes for this command: 0

SQL Server Performance and Tuning Guide 6-11

Sybase SQL Server Release 11.0.x Indexes and I/O Statistics

This query performs table scans on both tables. publishers occupies
only 2 data pages, so 2 physical I/Os are reported. There are 3
matching rows, so the query scans titles 3 times, reporting 1,872
logical reads (624 pages * 3).

Queries Reporting Scan Count of 0

Queries that report a scan count of 0 are:

• Those that perform deferred updates

• Those that use temporary worktables

Deferred Updates and Scan Count = 0

Deferred updates perform the changes to the data in two steps:

• Finding the rows using appropriate indexes if any. This step has a
scan count of 1 or more. Log records are written to the transaction
log during this step.

• Changing the data pages. This step is labeled “scan count 0”. If
there is no index on title_id, this query is done in deferred mode:

update titles set title_id = "T47166"
 where title_id = "T33040"

Table: titles scan count 0, logical reads: 34, physical reads: 12
Table: titles scan count 1, logical reads: 624, physical reads: 624
Total writes for this command: 2

The insert...select and select into commands also work in deferred mode
and report I/O for scan count 0:

select *
 into pub_table
 from publishers

Table: publishers scan count 1, logical reads: 2, physical reads: 2
Table: pub_table scan count 0, logical reads: 31, physical reads: 0
Total writes for this command: 7

insert pub_table
 select * from pub_table

Table: pub_table scan count 0, logical reads: 34, physical reads: 0
Table: pub_table scan count 1, logical reads: 1, physical reads: 0
Total writes for this command: 3

6-12 Indexing for Performance

Indexes and I/O Statistics Sybase SQL Server Release 11.0.x

Worktables and Scan Count of 0

Queries that include order by and distinct sometimes create worktables
and sort the results. The I/O on these worktables is reported with a
scan count equal to 0:

select distinct state
 from authors

Table: authors scan count 1, logical reads: 223, physical reads: 223
Table: Worktable1 scan count 0, logical reads: 5120, physical reads: 0
Total writes for this command: 3

Reads and Writes

In addition to reporting how many times a table is accessed, statistics
io reports the actual physical I/O required and the number of times
the query needed to access pages in memory. It reports the I/O in
three values:

• Logical reads, the number of times that a page in the cache is
referenced during query execution

• Physical reads, the number of times a page (or a group of pages,
if using large I/O) must be read from disk

• The number of writes to disk, “Total writes”

If a page needs to be read from disk, it is counted as a physical read
and a logical read. Logical I/O is always greater than or equal to
physical I/O.

Logical I/O always reports 2K data pages. Physical reads and writes
are reported in buffer-sized units. Multiple pages that are read in a
single I/O operation are treated as a unit: They are read, written, and
move through the cache as a single buffer.

Logical Reads, Physical Reads, and 2K I/O

With 2K I/O, the number of times that a page is found in cache for a
query is logical reads minus physical reads. When you see output
like this:

logical reads: 624, physical reads: 624

it means that all of the pages for a table had to be read from disk.

Often, when indexes are used to access a table, or when you are
rerunning queries during testing, statistics io reports a combination of
logical and physical reads, like this output from a point query:

SQL Server Performance and Tuning Guide 6-13

Sybase SQL Server Release 11.0.x Indexes and I/O Statistics

logical reads: 3, physical reads: 2

In this case, one of the pages was already in memory—quite possibly
the root page of the index. Two pages, possibly the intermediate or
leaf page plus the data page, needed to be read from disk.

Physical Reads and Large I/O

Physical reads are not reported in pages, but are reported as the
actual number of times SQL Server needs to access the disk. If the
query uses 16K I/O (as reported by showplan), a single physical read
brings 8 data pages into cache. If a query reports 100 16K physical
reads, it has read 800 data pages. If the query needs to scan each of
those data pages, it reports 800 logical reads. If a query, such as a join
query must read the page multiple times because other I/O has
flushed the page from the cache, each read is counted.

Reads and Writes on Worktables

Reads and writes are also reported for any worktable that needs to be
created for the query. When a query creates more than one
worktable, the worktables are numbered in statistics io output to
correspond to the worktable numbers used in showplan output.

Effects of Caching on Writes

The number of writes reported for a query may be misleading.
Sometimes, when you are just selecting data, statistics io may report
writes for the command. SQL Server writes modified pages to disk
only at checkpoints, when the housekeeper task writes dirty pages,
or when data cache space is needed for new data pages, and the
pages near the end of the buffer were changed while they were in the
cache. statistics io does not report on checkpoint or housekeeper I/O,
but does report writes when your query causes pages at the end of
the cache to be written to disk.

Effects of Caching on Reads

If you are testing a query and checking its I/O, and you execute the
same query a second time, you may get surprising physical reads
results if the query uses LRU replacement strategy. The first
execution reports a high number of physical reads, while the second
attempt reports 0 reads. However, this does not mean that your
tuning efforts have been instantly successful.

6-14 Indexing for Performance

Estimating I/O Sybase SQL Server Release 11.0.x

The first time you execute the query, all the data pages are read into
cache and remain there until some other server processes flushes
them from the cache. Depending on the cache strategy used for the
query, the pages may remain in cache for a longer or shorter time.

• If the query performs fetch-and-discard (MRU) caching, the
pages are read into the cache at the wash marker. In small or very
active caches, pages read into the cache at the wash marker are
flushed fairly quickly.

• If the query reads the pages in at the top of the MRU/LRU chain,
the pages remain in cache for much longer periods of time. This is
especially likely to happen if you have a large data cache and the
activity on your server is low.

For more information on testing and cache performance, see “Testing
Data Cache Performance” on page 15-10.

Estimating I/O

Checking the output from set statistics io provides information when
you actually execute a query. However, if you know the approximate
size of your tables and indexes, you can make I/O estimates without
running queries. Once you develop this knowledge of the size of
your tables and indexes, and the number of index levels in each
index, you can quickly determine whether I/O performance for a
query is reasonable, or whether a particular query needs tuning
efforts.

Following are some guidelines and formulas for making these
estimates.

Table Scans

When a query requires a table scan, SQL Server:

• Reads each page of the table from disk into the data cache

• Checks the data values (if there is a where clause) and returns
matching rows

If the table is larger than your data cache, SQL Server keeps flushing
pages out of cache so that it can read in additional pages until it
processes the entire query. It may use one of two strategies:

• Fetch-and-discard (MRU) replacement strategy: If the optimizer
estimates that the pages will not be needed again for a query, it
reads the page into the cache just before the wash marker. Pages

SQL Server Performance and Tuning Guide 6-15

Sybase SQL Server Release 11.0.x Estimating I/O

remain in cache for a short time, and do not tend to flush other
more heavily used pages out of cache.

• LRU replacement strategy: Pages replace a least-recently-used
buffer and are placed on the most-recently-used end of the chain.
They remain in cache until other disk I/O flushes them from the
cache.

Table scans are performed:

• When no index exists on the columns used in the query.

• When the optimizer chooses not to use an index. It makes this
choice when it determines that using the index is more expensive
than a table scan. This is more likely with nonclustered indexes.
The optimizer may determine that it is faster to read the table
pages directly than it is to go through several levels of indexes for
each row that is to be returned.

As a rule of thumb, table scans are chosen over nonclustered
index access when the query returns more rows than there are
pages in the table when using 2K I/O, and more rows than
pages divided by 8 when using 16K I/O.

Evaluating the Cost of a Table Scan

Performance of a table scan depends on:

• Table size, in pages

• Speed of I/O

• Data cache sizes and bindings

• I/O size available for the cache

The larger the cache available to the table, the more likely it is that all
or some of the table pages will be in memory because of a previous
read.

To estimate the cost of a table scan:

1. Determine the number of pages that need to be read. Use
sp_spaceused, dbcc tablealloc, or sp_estspace to check the number of
pages in the table, or use set statistics io on and execute a query that
scans the table using 2K I/O.

2. Determine the I/O size available in your data cache. Execute
sp_help tablename to see if the table is bound to a cache and
sp_cacheconfig to see the I/O sizes available for that cache.

6-16 Indexing for Performance

Estimating I/O Sybase SQL Server Release 11.0.x

Divide the number of pages in the table by the number of pages
that can be read in one I/O.

Determine the number of disk I/Os that your system can
perform per second; divide total reads by that number.

Figure 6-2: Formula for computing table scan time

For example, if sp_estspace gives table size of 76,923 pages and your
system reads 50 pages per second into 2K buffers, the time to execute
a table scan on the table is:

76923 pages/50 reads per second = 1538 seconds, about 25
minutes

If your cache can use 16K buffers, the value is:

76,923 pages/8 pages per read = 9615 reads
9615 reads/50 reads per second = 192 seconds, about 3 minutes

The speed could improve if some of the data were in cache.

Evaluating the Cost of Index Access

If you are selecting a specific value, the index can be used to go
directly to the row containing that value, making fewer comparisons
than it takes to scan the entire table. In range queries, the index can
point to the beginning and end of a range. This is particularly true if
the data is ordered by a clustered index.

When SQL Server estimates that the number of index and data page
I/Os is less than the number required to read the entire table, it uses
the index.

To determine the number of index levels, use one of these methods:

• Use sp_estspace, giving the current number of rows in the table, or
perform space estimates using the formulas.

• Use set statistics io and run a point query that returns a single row
using the clustered index. The number of levels is the number of
logical reads minus 1.

Pages in the table/pages per IO

Disk reads per second
I/O time =

SQL Server Performance and Tuning Guide 6-17

Sybase SQL Server Release 11.0.x Estimating I/O

Evaluating the Cost of a Point Query

A point query that uses an index performs one I/O for each index
level plus one read for the data page. In a frequently used table, the
root page and intermediate pages of indexes are often found in
cache, so that physical I/O is lower by one or two reads.

Evaluating the Cost of a Range Query

Range queries perform very differently, depending on the type of
index. Range queries on clustered indexes and on covering
nonclustered indexes are very efficient. They use the index to find the
first row, and then scan forward on the leaf level.

Range queries using nonclustered indexes (those that do not cover
the query) are more expensive, since the rows may be scattered
across many data pages.

Range Queries Using Clustered Indexes

To estimate the number of page reads required for a range query that
uses the clustered index to resolve a range query, you can use this
formula:

Figure 6-3: Computing reads for a clustered index range query

If a query returns 150 rows, and the table has 10 rows per page, the
query needs to read 15 data pages, plus the needed index pages. If
the query uses 2K I/O, it requires 15 or 16 I/Os for the data pages,
depending on whether the range starts in the middle of a page. If
your query uses 16K I/O, these 15 data pages require a minimum of
2 or 3 I/Os for the database. 16K I/O reads entire extents in a single
I/O, so 15 pages might occupy 2 or 3 extents if the page chains are
contiguous in the extents. If the page chains are not contiguous,
because the table has been frequently updated, the query could
require as many as 15 or 16 16K I/Os to read the entire range. See

Reads
required

of rows returned/# of rows per pageNumber of
index levels Pages per I0

= +

6-18 Indexing for Performance

Estimating I/O Sybase SQL Server Release 11.0.x

“Maintaining Data Cache Performance for Large I/O” on page 15-30
for more information on large I/O and fragmentation.

Figure 6-4: Range query on a clustered index

Range Queries with Covering Nonclustered Indexes

Range queries via covering nonclustered indexes can perform very
well:

• The index can be used to position the search at the first qualifying
row in the index.

• Each index page contains more rows than corresponding data
rows, so fewer pages need to be read.

• Index pages remain in cache longer than data pages, so fewer
physical I/Os are needed.

Page 1144
Green
Greene
Highland

Page 1132
Bennet
Chan
Dull
Edwards

Page 1133
Greane
Greaves
Greco

Page 1127
Hunter
Jenkins

Page 1007
Bennet 1132
Greane 1133
Green 1144
Hunter 1127

Page 1009
Karsen 1009

Page 1001
Bennet 1007
Karsen 1009
Smith 1062

Root page Data pagesIntermediate

Key Pointer

Key Pointer

select fname, lname, id
from employees
where lname between "Greaves"
and "Highland"

Clustered index on lname

SQL Server Performance and Tuning Guide 6-19

Sybase SQL Server Release 11.0.x Estimating I/O

• If the cache used by the nonclustered index allows large I/O, up
to 8 pages can be read per I/O.

• The data pages do not have to be accessed.

Figure 6-5 shows a range query on a covering nonclustered index.

Figure 6-5: Range query with a covering nonclustered index

To estimate the cost of using a covering nonclustered index, you need
to know:

• The number of index levels

• The number of rows per page on the leaf level of the index

• The number of rows that the query returns

Page 1544
Bennet,Sam,409... 1580,1 1560
Greane,Grey,486... 1307,1 1561
Highland,Judy,457. 1580,2 1843

Page 1561
Greane,Grey,486... 1307,4
Greaves,Rita,398... 1421,2
Greene,Cindy,127... 1409,2
Greco,Del,672... 1409,4

Page 1843
Highland,Judy,442... 1580,2
Hunter,Hugh,457... 1307,1
Jenkins,Ray,723... 1242,4

Page 1560
Bennet,Sam,409... 1580,1
Chan,Sandra,817... 1129,3
Dull,Normal,415... 1409,1
Edwards,Linda,238... 1018,5

Root page Data pagesIntermediate

Key Pointer

Leaf pages

Key RowID Pointer

select fname, lname, id
from employees
where lname between "Greaves"
and "Hunter"

Nonclustered index on lname, fname, au_id

Page 1647
10 O’Leary
11 Ringer
12 White
13 Jenkins

Page 1649
14 Hunter
15 Smith
16 Ringer
17 Greane

Page 1580
18 Bennet...
19 Highland...
20 Yokomoto

Page 1703
21 Dull
22 Greene
23 White
24 Greco

6-20 Indexing for Performance

Estimating I/O Sybase SQL Server Release 11.0.x

• The number of leaf pages read per I/O:

Figure 6-6: Computing reads for a covering nonclustered index range query

Range Queries with Noncovering Nonclustered Indexes

Clustered indexes and covering nonclustered indexes generally
perform extremely well for range queries on the index key, because
they scan leaf pages that are in order by the index key. However,
range queries on the key of noncovering nonclustered indexes are
much more sensitive to the size of the range in the query. For small
ranges, a nonclustered index may be efficient, but for larger ranges,
using a nonclustered index can require more reads than a table scan.

At the leaf level of a nonclustered index, the keys are stored
sequentially, but at the data level, rows can be randomly placed
throughout the data pages. The keys on a page in a nonclustered
index can point to a large number of data rows. When SQL Server
returns rows from a table using a nonclustered index, it performs
these steps:

• It locates the first qualifying row at the leaf level of the
nonclustered index.

• It follows the pointers to the data page for that index.

• It finds the next row on the index page, and locates its data page.
The page may already be in cache, or it may have to be read from
disk.

When you run this query on the authors table in the pubtune database,
with an index on au_lname, it selects 265 rows, performing a table
scan of the table’s 223 data pages:

select au_fname, au_lname, au_id
from authors
where au_lname between "Greaves"
 and "Highland"

Especially with short keys, a single leaf-level page in a nonclustered
index can point to 100 or more data pages. Using a clustered index,
SQL Server follows the index pointers to the first data page with the
correct value, and then follows the page chain to read subsequent
rows. However, with a nonclustered index, the data pages for a given

Reads
required

of rows returned/# of rows per pageNumber of
index levels Pages per I0

= +

SQL Server Performance and Tuning Guide 6-21

Sybase SQL Server Release 11.0.x Indexes and Sorts

range can be scattered throughout the database, so it may be
necessary to read each page several times. The formula for
estimating I/O for range queries accessing the data through a
nonclustered index is:

Figure 6-7: Computing reads for a nonclustered index range query

The optimizer estimates that a range query that returns 500 rows,
with an index structure of 3 levels and 100 rows per page on the leaf
level of the nonclustered index, requires 507 or 508 I/Os:

• 1 read for the root level and 1 read for the intermediate level

• 5 or 6 reads for the leaf level of the index

• 500 reads for the data pages

Although it is possible that some of the rows in the result set will be
found on the same data pages, or that they will be found on data
pages already in cache, this is not predictable. The optimizer costs a
physical I/O for each row to be returned, and if this estimate exceeds
the cost of a table scan, it chooses the table scan. If the table in this
example has less than 508 pages, the optimizer chooses a table scan.

Indexes and Sorts

When there are no indexes and an order by clause is included in a
query, the query must perform a table scan and sort the results. Sorts
and worktables are also required when the index used for the where
clause does not match the order by clause. The use of desc in an order by
clause, to get results in descending order, always requires a sort.

When SQL Server optimizes queries that require sorts, it computes
the physical and logical I/O cost of creating a work table and
performing the sort for every index where the index order does not
match the sort order. This favors the use of an index that supports the
order by clause.

For composite indexes, the order of the keys in the index must match
the order of the columns named in the order by clause.

Reads
required # of rows returned

Number of
index levels

= +
of rows returned

of rows per leaf level index page
+

6-22 Indexing for Performance

Indexes and Sorts Sybase SQL Server Release 11.0.x

Sorts and Clustered Indexes

If the data is clustered in the order required by the sort, the sort is not
needed and is not performed.

Figure 6-8: A sort using a clustered index

The following range query returns about 2000 rows. It can use a
clustered index on title_id to reduce I/O:

select * from titles
where title_id between ’T43’ and ’T791’
order by title_id

Table: titles scan count 1, logical reads: 246, physical reads: 246
Total writes for this command: 0

Since the data is stored in ascending order, a query requiring
descending sort order (for example, order by title_id desc) cannot use
any indexes, but must sort the data.

Page 1133
Greane
Greaves
Greco

Page 1007
Bennet 1132
Greane 1133
Green 1144
Hunter 1127

Page 1009
Karsen 1009

Page 1144
Green
Greene
Highland

Page 1132
Bennet
Chan
Dull
Edwards

Page 1127
Hunter
Jenkins

Page 1001
Bennet 1007
Karsen 1009
Smith 1062

Root page Data pagesIntermediate

Key Pointer

Key Pointer

select fname, lname, id
from employees
order by lname

Clustered index on lname

SQL Server Performance and Tuning Guide 6-23

Sybase SQL Server Release 11.0.x Indexes and Sorts

Sorts and Nonclustered Indexes

With a nonclustered index, SQL Server determines whether using
the nonclustered index is faster than performing a table scan,
inserting rows into a worktable, and then sorting the data.

To use the index, SQL Server needs to retrieve the index pages and
use them to access the proper data pages in the proper order. If the
number of rows to be returned is small, nonclustered index access is
cheaper than a table scan. But if the number of rows to be returned is
greater than the number of I/Os required to perform the table scan,
perform the sort, and to construct and read the worktable, a table
scan and sort is performed.

If there is a nonclustered index on title_id, this query requires a
worktable to sort the results:

select * from titles
where title_id between ’T43’ and ’T791’
order by title_id

It produces this report from statistics io:

Table: titles scan count 1, logical reads: 621, physical reads: 621
Table: Worktable scan count 0, logical reads: 2136, physical reads: 0
Total writes for this command: 0

This is the same query that produces only 246 physical reads and no
worktable when it uses a clustered index.

Sorts When the Index Covers the Query

When all the columns named in the select list, the search arguments,
and the order by clause are included in a nonclustered index, SQL
Server uses the leaf level of the nonclustered index to retrieve the
data and does not have to read the data pages.

If the sort is in ascending order, and the order by columns form a prefix
subset of the index keys, the rows are returned directly from the
nonclustered index leaf pages.

If the sort is in descending order, or the columns do not form a prefix
subset of the index keys, a worktable is created and sorted.

With an index on au_lname, au_fname, au_id of the authors table, this
query can return the data directly from the leaf pages:

select au_id, au_lname
from authors
order by au_lname, au_fname

6-24 Indexing for Performance

Choosing Indexes Sybase SQL Server Release 11.0.x

Table: authors scan count 1, logical reads: 91, physical reads: 81
Total writes for this command: 0

Choosing Indexes

Questions to ask when working with index selection are:

• What indexes are associated currently with a given table?

• What are the most important processes that make use of the
table?

• What is the overall ratio of select operations to data modifications
performed on the table?

• Has a clustered index been assigned to the table?

• Can the clustered index be replaced by a nonclustered index?

• Do any of the indexes cover one or more of the critical queries?

• Is a composite index required to enforce the uniqueness of a
compound primary key?

• What indexes can be defined as unique?

• What are the major sorting requirements?

• Do the indexes support your joins, including those referenced by
triggers and referential integrity constraints?

• Does indexing affect update types (direct vs. deferred)?

• What indexes are needed for cursor positioning?

• If dirty reads are used, are there unique indexes to support the
scan?

• Should IDENTITY columns be added to tables and indexes to
generate unique indexes? (Unique indexes are required for
updatable cursors and dirty reads.)

When deciding how many indexes to use, consider:

• Space constraints

• Access paths to table

• Percentage of data modifications vs. select operations

• Performance requirements of reports vs. OLTP

• Performance impacts of index changes

• How often you can update statistics

SQL Server Performance and Tuning Guide 6-25

Sybase SQL Server Release 11.0.x Choosing Indexes

Index Keys and Logical Keys

Index keys need to be differentiated from logical keys. Logical keys
are part of the database design, defining the relationships between
tables: primary keys, foreign keys, and common keys. When you
optimize your queries by creating indexes, these logical keys may or
may not be used as the physical keys for creating indexes. You can
create indexes on columns that are not logical keys, and you may
have logical keys that are not used as index keys.

Guidelines for Clustered Indexes

These are general guidelines for clustered indexes:

• Most tables should have clustered indexes or use partitions.
Without a clustered index or partitioning, all inserts and some
updates go to the last page. In a high-transaction environment,
the locking on the last page severely limits throughput.

• If your environment requires a lot of inserts, the clustered index
key should not be placed on a monotonically increasing value
such as an IDENTITY column. Choose a key that places inserts on
“random” pages to minimize lock contention while remaining
useful in many queries. Often, the primary key does not meet this
guideline.

• Clustered indexes provide very good performance when the key
matches the search argument in range queries, such as:

where colvalue >= 5 and colvalue < 10

• Other good candidates for clustered index keys are columns used
in order by and group by clauses and in joins.

Choosing Clustered Indexes

Choose indexes based on the kinds of where clauses or joins you
perform. Candidates for clustered indexes are:

• The primary key, if it is used for where clauses and if it randomizes
inserts

6-26 Indexing for Performance

Choosing Indexes Sybase SQL Server Release 11.0.x

➤ Note
If the primary key is a monotonically increasing value, placing a clustered

index on this key can cause contention for the data page where the inserts

take place. This severely limits concurrency. Be sure that your clustered

index key randomizes the location of inserts.

• Columns that are accessed by range, such as:

col1 between "X" and "Y” or col12 > "X" and < "Y"

• Columns used by order by or group by

• Columns that are not frequently changed

• Columns used in joins

If there are multiple candidates, choose the most commonly needed
physical order as a first choice. As a second choice, look for range
queries. During performance testing, check for “hot spots,” places
where data modification activity encounters blocking due to locks on
data or index pages.

Candidates for Nonclustered Indexes

When choosing columns for nonclustered indexes, consider all the
uses that were not satisfied by your clustered index choice. In
addition, look at columns that can provide performance gains
through index covering.

The one exception is noncovered range queries, which work well
with clustered indexes, but may or may not be supported by
nonclustered indexes, depending on the size of the range.

Consider composite indexes to cover critical queries and support less
frequent queries:

• The most critical queries should be able to perform point queries
and matching scans.

• Other queries should be able to perform nonmatching scans
using the index, avoiding table scans.

Other Indexing Guidelines

Here are some other considerations for choosing indexes:

SQL Server Performance and Tuning Guide 6-27

Sybase SQL Server Release 11.0.x Choosing Indexes

• If an index key is unique, be sure to define the index as unique.
Then, the optimizer knows immediately that only one row will be
returned for a search argument or a join on the key.

• If your database design uses referential integrity (the references or
foreign key...references keywords in the create table statement), the
referenced columns must have a unique index. However, SQL
Server does not automatically create an index on the referencing
column. If your application updates and deletes primary keys,
you may want to create an index on the referencing column so
that these lookups do not p1eserform a table scan.

• If your applications use cursors, see “Index Use and
Requirements for Cursors” on page 12-6.

• If you are creating an index on a table where there will be a lot of
insert activity, use fillfactor to temporarily:

- Minimize page splits

- Improve concurrency and minimize deadlocking

• If you are creating an index on a read-only table, use a fillfactor of
100 to make the table or index as compact as possible.

• Keep the size of the key as small as possible. Your index trees
remain flatter, accelerating tree traversals. More rows fit on a
page, speeding up leaf-level scans of nonclustered index pages.
Also, more data fits on the distribution page for your index,
increasing the accuracy of index statistics.

• Use small datatypes whenever it fits your design.

- Numerics compare faster than strings internally.

- Variable-length character and binary types require more row
overhead than fixed-length types, so if there is little difference
between the average length of a column and the defined
length, use fixed length. Character and binary types that accept
null values are by definition variable length.

- Whenever possible, use fixed-length, non-null types for short
columns that will be used as index keys.

• Keep datatypes of the join columns in different tables compatible.
If SQL Server has to convert a datatype on one side of a join, it
may not use an index for that table. See “Datatype Mismatches
and Joins” on page 7-19 for more information.

6-28 Indexing for Performance

Choosing Indexes Sybase SQL Server Release 11.0.x

Choosing Nonclustered Indexes

When you consider nonclustered indexes, you must weigh the
improvement in retrieval time against the increase in data
modification time.

In addition, you need to consider these questions:

• How much space will the indexes use?

• How volatile is the candidate column?

• How selective are the index keys? Would a scan be better?

• Is there a lot of duplication?

Because of overhead, add nonclustered indexes only when your
testing shows that they are helpful.

Candidates include:

• Columns used for aggregates

• Columns used for joins, order by, group by

Performance Price for Updates

Also, remember that with each insert, all nonclustered indexes have
to be updated, so there is a performance price to pay. The leaf level
has one entry per row, so you will have to change that row with every
insert.

All nonclustered indexes need to be updated:

• For each insert into the table.

• For each delete from the table.

• For any update to the table that changes any part of an index’s
key, or that deletes a row from one page and inserts it on another
page.

• For almost every update to the clustered index key. Usually, such
an update means that the row moves to a different page.

• For every data page split.

Choosing Composite Indexes

If your needs analysis shows that more than one column would
make a good candidate for a clustered index key, you may be able to

SQL Server Performance and Tuning Guide 6-29

Sybase SQL Server Release 11.0.x Choosing Indexes

provide clustered-like access with a composite index that covers a
particular query or set of queries. These include:

• Range queries

• Vector (grouped) aggregates, if both the grouped and grouping
columns are included

• Queries that return a high number of duplicates

• Queries that include order by

• Queries that table scan, but use a small subset of the columns on
the table

Tables that are read-only or read-mostly can be heavily indexed, as
long as your database has enough space available. If there is little
update activity, and high select activity, you should provide indexes
for all of your frequent queries. Be sure to test the performance
benefits of index covering.

User Perceptions and Covered Queries

Covered queries can provide excellent response time for specific
queries, while sometimes confusing users by providing much slower
response time for very similar-looking queries. With the composite
nonclustered index on au_lname, au_fname, au_id, this query runs
very fast:

select au_id
 from authors
where au_fname = "Eliot" and au_lname = "Wilk"

This covered point query needs to perform only three reads to find
the value on the leaf level row in the nonclustered index of a
5000-row table.

Users might understand why this similar-looking query (using the
same index) does not perform quite as well:

select au_fname, au_lname
 from authors
where au_id = "A1714224678"

However, this query does not include the leading column of the
index, so it has to scan the entire leaf level of the index, about 95
reads.

Adding a column to the select list, which may seem like a minor
change to users, makes the performance even worse:

6-30 Indexing for Performance

Choosing Indexes Sybase SQL Server Release 11.0.x

select au_fname, au_lname, phone
 from authors
where au_id = "A1714224678"

This query performs a table scan, reading 222 pages. In this case, the
performance is noticeably worse. But the optimizer has no way of
knowing the number of duplicates in the third column (au_id) of a
nonclustered index: it could match a single row, or it could match
one-half of the rows in a table. A composite index can be used only
when it covers the query or when the first column appears in the
where clause.

Adding an unindexed column to a query that includes the leading
column of the composite index adds only a single page read to this
query, when it must read the data page to find the phone number:

select au_id, phone
 from authors
where au_fname = "Eliot" and au_lname = "Wilk"

The Importance of Order in Composite Indexes

The examples above highlight the importance of the ordering of
columns in composite indexes. Table 6-5 shows the performance
characteristics of different where clauses with a nonclustered index on
au_lname, au_fname, au_id and no other indexes on the table. The
performance described in this table is for where clauses in the form:

where column_name = value

Table 6-5: Composite nonclustered index ordering and performance

Columns Named in the
where Clause

With Only au_lname,
au_fname and/or au_id
in the Select List

With Other Columns in
the Select List

au_lname

or au_lname, au_fname

or au_lname, au_fname,
au_id

Good; index used to
descend tree; data is
not accessed

Good; index used to
descend tree; data is
accessed (one more
page read per row)

au_fname

or au_id

or au_fname, au_id

Moderate, index is
scanned to return
values

Poor, index not used,
table scan

SQL Server Performance and Tuning Guide 6-31

Sybase SQL Server Release 11.0.x Choosing Indexes

Choose the right ordering of the composite index so that most
queries form a prefix subset.

Advantages of Composite Indexes

Composite indexes have these advantages:

• A dense composite index provides many opportunities for index
covering.

• A composite index with qualifications on each of the keys will
probably return fewer records than a query on any single
attribute.

• A composite index is a good way to enforce uniqueness of
multiple attributes.

Good choices for composite indexes are:

• Lookup tables

• Columns frequently accessed together

Disadvantages of Composite Indexes

The disadvantages of composite indexes are:

• Composite indexes tend to have large entries. This means fewer
index entries per index page and more index pages to read.

• An update to any attribute of a composite index causes the index
to be modified. The columns you choose should not be those that
are updated often.

Poor choices are:

• Indexes that are too wide because of long keys

• Composite indexes where only the second or third portion, or an
even later portion, is used in the where clause

Key Size and Index Size

Small index entries yield small indexes, producing less index I/O to
execute queries. Longer keys produce fewer entries per page, so an
index requires more pages at each level, and in some cases,
additional index levels.

6-32 Indexing for Performance

Techniques for Choosing Indexes Sybase SQL Server Release 11.0.x

Figure 6-9: Sample rows for small and large index entries

The disadvantage of have a covering, nonclustered index,
particularly if the index entry is wide, is that there is a larger index to
traverse, and updates are more costly.

Techniques for Choosing Indexes

This section presents a study of two queries that must access a single
table, and the indexing choices that these queries present as
standalone queries, and when index choices need to be made
between the two queries.

Examining a Single Query

Assume that you need to improve performance of the following
query:

select title
from titles
where price between $20.00 and $30.00

You know the size of the table in rows and pages, the number of rows
per page, and the number of rows that the query returns:

• 1,000,000 rows (books)

• 190,000 are priced between $20 and $30

• 10 rows per page; pages 75 percent full; approximately 140,000
pages

...

129 entries per page

8 bytes per entry

10,000 entries requires 77 leaf index pages

40 entries per page

40 bytes per entry

10,000 entries requires 250 leaf index pages

entry1 longentry1 longentry40...entry129entry2 vs.

vs.

2 index levels 3 index levels

SQL Server Performance and Tuning Guide 6-33

Sybase SQL Server Release 11.0.x Techniques for Choosing Indexes

With no index, the query would scan all 140,000 pages.

With a clustered index on price, the query would find the first $20
book and begin reading sequentially until it gets to the last $30 book.
With 10 data rows per page, and 190,000 matching rows, the query
would read 19,000 pages plus 3 or 4 index pages.

With a nonclustered index on price and random distribution of price
values, using the index to find the rows for this query would require
190,000 logical page reads plus about 19 percent of the leaf level of
index, adding about 1500 pages. Since a table scan requires only
140,000 pages, the nonclustered index would probably not be used.

Another choice is a nonclustered index on price, title. The query can
perform a matching index scan, finding the first page with a price of
$20 via index pointers, and then scanning forward on the leaf level
until it finds a price more than $30. This index requires about 35,700
leaf pages, so to scan the matching leaf pages requires about 6,800
reads.

For this query, the nonclustered index on price, title is best.

Examining Two Queries with Different Indexing Requirements

This query also needs to run against the same table:

select price
from titles
where title = "Looking at Leeks"

You know that there are very few duplicate titles, so this query
returns only one or two rows.

Here are four possible indexing strategies, identified by the numbers
used in subsequent discussion:

1. Nonclustered index on titles(title); clustered index on titles(price)

2. Clustered index on titles(title); nonclustered index on titles(price)

3. Nonclustered index on titles(title, price)

4. Nonclustered index on titles(price,title)

Table 6-6 shows some estimates of index sizes and I/O for the range
query on price and the point query on title. The estimates for the
numbers of index and data pages were generated using a fillfactor of
75 percent with sp_estspace:

sp_estspace titles, 1000000, 75

The values were rounded for easier comparison.

6-34 Indexing for Performance

Techniques for Choosing Indexes Sybase SQL Server Release 11.0.x

Examining these figures shows that:

• For the range query on price, indexing choice 4 is best, and choices
1 and 3 are acceptable with 16K I/O.

• For the point query on titles, indexing choices 1, 2, and 3 are
excellent.

The best indexing strategy for the combination of these two queries
is to use two indexes:

• The nonclustered index in price, title, for range queries on price

• The clustered index on title, since it requires much less space

Other information could help determine which indexing strategy to
use to support multiple queries:

• What is the frequency of each query? How many times per day or
per hour is the query run?

• What are the response time requirements? Is one of them
especially time critical?

• What are the response time requirements for updates? Does
creating more than one index slow updates?

Table 6-6: Comparing index strategies for two queries

Index Choices Index
Pages Range Query on price Point Query on title

1 Nonclustered on title
Clustered on price

36,800
650

Clustered index, about
26,600 pages (140,000 * .19)

With 16K I/O: 3,125 I/Os

Nonclustered index, 6 I/Os

2 Clustered on title
Nonclustered on price

3,770
6,076

Table scan, 140,000 pages

With 16K I/O: 17,500 I/Os

Clustered index, 6 I/Os

3 Nonclustered on
title, price

36,835 Nonmatching index scan,
about 35,700 pages

With 16K I/O: 4,500 I/Os

Nonclustered index,
5 I/Os

4 Nonclustered on
price, title

36,835 Matching index scan, about
6,800 pages (35,700 * .19)

With 16K I/O: 850 I/Os

Nonmatching index scan,
about 35,700 pages

With 16K I/O: 4,500 I/Os

SQL Server Performance and Tuning Guide 6-35

Sybase SQL Server Release 11.0.x Index Statistics

• Is the range of values typical? Is a wider or narrower range of
prices, such as $20 to $50 often used? How do these ranges affect
index choice?

• Is there a large data cache? Are these queries critical enough to
provide a 35,000-page cache for the nonclustered composite
indexes in index choice 3 or 4? Binding this index to its own cache
would provide very fast performance.

Index Statistics

When you create an index on a table that contains data, SQL Server
creates a distribution page containing two kinds of statistics about
index values:

• A distribution table

• A density table

An index’s distribution page is created when you create an index on
a table that contains data. If you create an index on an empty table,
no distribution page is created. If you truncate the table (removing all
of its rows) the distribution page is dropped.

The data on the distribution page is not automatically maintained by
SQL Server. You must run the update statistics command to update the
data. You should run this command:

• When you feel that the distribution of the keys in an index has
changed

• If you truncate a table and reload the data

• When you determine that query plans may be less optimal due to
incorrect statistics

The Distribution Table

The distribution table stores information about the distribution of
key values in the index. If the index is a composite index, it only
stores distribution information about the first key.

The distribution table is a list of key values called steps. The number
of steps on the distribution page depends on the key size and
whether the column stores variable-length data.

The statistics page looks very much like a data page or index page.
One major difference is that it does not contain a row offset table. The
density table occupies this space on the page; for each key in the

6-36 Indexing for Performance

Index Statistics Sybase SQL Server Release 11.0.x

index, the density uses 2 bytes of storage. The rest of the page is
available to store the steps. Figure 6-10 shows how to compute the
number of steps that will be stored on the distribution page. Fixed-
length columns have 2bytes of overhead per step; variable-length
columns have 7 bytes of overhead per step.

Figure 6-10: Formulas for computing number of distribution page values

For variable-length columns, the defined (maximum) length is
always used.

Once the number of steps is determined, SQL Server divides the
number of rows in the table by the number of steps, and then stores
the data value for every Nth row in the distribution table. Figure 6-11
shows this process for a small part of an index.

Number of keys =
2016 - (Number of keys * 2)

Bytes per key +2

Number of keys =
2016 - (Number of keys * 2)

Bytes per key +7

Fixed-Length Key

Variable-Length Key

SQL Server Performance and Tuning Guide 6-37

Sybase SQL Server Release 11.0.x Index Statistics

Figure 6-11: Building the distribution page

The Density Table

The query optimizer uses statistics to estimate the cost of using an
index. One of these statistics is called the density. The density is the
average proportion of duplicate keys in the index. It varies between
0 and 100 percent. An index with N rows whose keys are unique will
have a density of 1/N, while an index whose keys are all duplicates
of each other will have a density of 100 percent.

Figure 6-11 shows a single-entry density table, since the index is built
on a single key. For indexes with multiple keys, there will be a value
for each prefix of keys in the index. SQL Server maintains a density

header

Step Value

0 T10

1 T10007

2 T10029

3 T10035

.

.

.

153 T99584

T10

 T10

 T10

 T10001

 T10001

 T10001

 T10007

 T10007

 T10007

 T10023

 T10023

 T10023

 T10029

 T10029

 T10032

 T10032

 T10035

 T10035

 T10038

 T10038

.

.

.

T99584

Index on title_id, varchar(6)

1000 rows in the table

(2016 -2) / (6 + 7) = 154 steps

1000/154 = 6

1 step for every 6th row

Density table

6-38 Indexing for Performance

How the Optimizer Uses the Statistics Sybase SQL Server Release 11.0.x

for each prefix of columns in composite indexes. That is, for an index
on columns A, B, C, D, it stores the density for:

• A

• A, B

• A, B, C

• A, B, C, D

If density statistics are not available, the optimizer uses default
percentages, as shown in Table 6-7.

For example, if there is no statistics page for an index on authors(city),
the optimizer estimates that 10 percent of the rows must be returned
for this query:

select au_fname, au_lname, pub_name
 from authors a, publishers p
 where a.city = p.city

How the Optimizer Uses the Statistics

The optimizer uses index statistics to estimate the usefulness of an
index and to decide join order. For example, this query finds a large
number of titles between $20 and $30:

select title from titles
where price between $20.00 and $30.00

However, this query finds only a few rows between $1000 and $1010:

Table 6-7: Default density percentages

Condition Examples Default

Equality col = x 10%

Closed interval col > x and col < y

or

col between x and y

25%

Open end range col > x

col >= x

col < x

col <= x

33%

SQL Server Performance and Tuning Guide 6-39

Sybase SQL Server Release 11.0.x How the Optimizer Uses the Statistics

select titles from titles
where price between $1000.00 and $1010.00

The number of rows returned may be different, and this affects the
usefulness of nonclustered indexes.

The statistics the optimizer uses include:

• The number of rows in the table

• The number of pages for the table or on the leaf level of the
nonclustered index

• The density value

• The distribution table

How the Optimizer Uses the Distribution Table

When the optimizer checks for a value in the distribution table, it will
find that one of these conditions holds:

• The value falls between two consecutive rows in the table.

• The value equals one row in the middle of the table.

• The value equals the first row or the last row in the table.

• The value equals more than one row in the middle of the table.

• The value equals more than one row, including the first or last
row in the table.

• The value is less than the first row, or greater than the last row in
the table. (In this case, you should run update statistics.)

Depending on which cases match the query, the optimizer uses
formulas involving the step location (beginning, end, or middle of
the page), the number of steps, the number of rows in the table, and
the density to compute an estimated number of rows.

How the Optimizer Uses the Density Table

The optimizer uses the density table to help compute the number of
rows that a query will return. Even if the value of a search argument
is not known when the query is optimized, SQL Server can use the
density values in an index, as long as the leading column or columns
are specified for composite indexes.

6-40 Indexing for Performance

Index Maintenance Sybase SQL Server Release 11.0.x

Index Maintenance

Indexes should evolve as your system evolves.

• Over time, indexes should be based on the transactions and
processes that are being run, not on the original database design.

• Drop and rebuild indexes only if they are hurting performance.

• Keep index statistics up to date.

Monitoring Index Usage Over Time

Periodically check the query plans, as described in Chapter 8,
“Understanding Query Plans,” and the I/O statistics for your most
frequent user queries. Pay special attention to nonclustered indexes
that support range queries. They are most likely to switch to table
scans if the data changes.

Dropping Indexes That Hurt Performance

Drop indexes when they hurt performance. If an application
performs data modifications during the day and generates reports at
night, you may want to drop some of the indexes in the morning and
re-create them at night.

Many system designers create numerous indexes that are rarely, if
ever, actually used by the query optimizer. Use query plans to
determine whether your indexes are being used.

Index Statistics Maintenance

When you create an index after a table is loaded, a data distribution
table is created for that index. The distribution page is not
automatically maintained. The database owner must issue an update
statistics command to ensure that statistics are current. The syntax is:

update statistics table_name [index_name]

For example, this command updates all the indexes on the authors
table:

update statistics authors

To update a single index, give the table name and index name:

update statistics titles titles_idx

SQL Server Performance and Tuning Guide 6-41

Sybase SQL Server Release 11.0.x Index Maintenance

Run update statistics:

• After deleting or inserting rows which change the skew of data

• After adding rows to a table whose rows had previously been
deleted with truncate table

• After updating values in index columns

• As often as needed

Run update statistics after inserts to any index that includes IDENTITY
columns or an increasing key value. Date columns, such as those in a
sales entry application, often have regularly increasing keys.
Running update statistics on these types of indexes is especially
important if the IDENTITY column or other increasing key is the
leading column in the index. After a number of inserts past the last
key that was included in the index, all that the optimizer can tell is
that the search value lies beyond the last row in the distribution page
but it cannot accurately determine how many rows are represented.

➤ Note
Failure to update statistics can severely hurt performance.

SQL Server is a very efficient transaction processing engine.
However, if statistics are not up to date, a query that should take only
a few seconds could take much longer.

Rebuilding Indexes

Rebuild indexes reclaims space in the B-trees. As pages split and as
rows are deleted, indexes can contain many pages that are only half
full or that only contain a few rows. Also, if your application
performs scans on covering nonclustered indexes and large I/O,
rebuilding the nonclustered index maintains the effectiveness of
large I/O by reducing fragmentation.

Rebuild indexes under the following conditions:

• Data and usage patterns have changed significantly.

• A period of heavy inserts is expected, or has just been completed.

• The sort order has changed.

• Queries that use large I/O require more disk reads than expected.

• Space usage exceeds estimates because heavy data modification
has left many data and index pages partially full.

6-42 Indexing for Performance

Displaying Information About Indexes Sybase SQL Server Release 11.0.x

• dbcc has identified errors in the index.

If you rebuild a clustered index, all nonclustered indexes are re-
created, since data pages and rows will be in a new clustered order
and will have their pages copied to a new location. Nonclustered
indexes must be re-created to point to the correct pages.

Rebuilding indexes takes time. Use the sp_estspace procedure to
estimate the time needed to generate indexes. See the sample output
in “Index Entries Are Too Large” on page 6-4.

In most database systems, there are well-defined peak periods and
off-hours. You can use off-hours to your advantage, for example:

• To delete all indexes to allow more efficient bulk inserts

• To create a new group of indexes to help generate a set of reports.

See “Creating Indexes” on page 18-2 for information about
configuration parameters to increase the speed of creating indexes.

Speeding Index Creation with sorted data

If data is already sorted, use sorted_data option to create index. This
option:

• Checks to see that the rows in the table are in order by the index
keys

• Makes a copy of the data at a new location, if the index is a
clustered index

• Builds the index tree

Using this option saves the time that would otherwise be required
for the sort step. For large tables that require numerous passes to
build the index, the time saved is considerable.

➤ Note
The sorted data option copies the entire data level of a clustered index, so

you need approximately 120 percent of the space required for the table

available in your database.

Displaying Information About Indexes

The sysindexes table in each database contains one row for each:

• Index

SQL Server Performance and Tuning Guide 6-43

Sybase SQL Server Release 11.0.x Tips and Tricks for Indexes

• Heap table

• Table that contains text or image columns.

The contents are maintained by SQL Server. To display index
information, use sp_helpindex.

The distribution column displays 0 if no statistics exist for an index
because the index was created on an empty table. If distribution is
“non-zero,” the value points to the distribution page.

The doampg and ioampg columns in sysindexes store pointers to the
first OAM page for the data pages (doampg) or index pages (ioampg).
The system functions data_pgs, reserved_pgs and used_pgs use these
pointers and the object ID to quickly provide information about
space usage. See “OAM Pages and Size Statistics” on page 5-2 for a
sample query.

Tips and Tricks for Indexes

Here are some additional suggestions that can lead to improved
performance when you are creating and using indexes:

• Modify the logical design to make use of an artificial column and
a lookup table for tables that require a large index entry.

• Reduce the size of an index entry for a frequently used index.

• Drop indexes during periods when frequent updates occur and
rebuild them before periods when frequent selects occur.

• If you do frequent index maintenance, configure your server to
speed sorting. See “Configuring SQL Server to Speed Sorting” on

Table 6-8: Page pointers for unpartitioned tables in the sysindexes table

Object Type indid root first

Heap table 0 Last data page in the
table’s data chain

First data page in the
table’s data chain

Clustered
index

1 Root page of the index First data page in the
table’s data chain

Nonclustered
 index

2–250 Root page of the index First leaf page of the
nonclustered index

Text/image
object

255 First page of the object First page of the object

6-44 Indexing for Performance

Choosing Fillfactors for Indexes Sybase SQL Server Release 11.0.x

page 18-2 for information about configuration parameters that
enable faster sorting.

Creating Artificial Columns

When indexes become too large, especially composite indexes, it is
beneficial to create an artificial column that is assigned to a row, with
a secondary lookup table that is used to translate between the
internal ID and the original columns. This may increase response
time for certain queries, but the overall performance gain due to a
more compact index is usually worth the effort.

Keeping Index Entries Short and Avoiding Overhead

Avoid storing purely numeric IDs as character data (varchar, char, or
nvarchar). Use integer or numeric IDs whenever possible to:

• Save storage space on the data pages

• Make index entries more compact

• Allow more rows on the distribution page, if the ID is used as an
index key

• Compare faster internally

Indexes entries on varchar columns require more overhead than
entries on char columns. For short index keys, especially those with
little variation in length in the column data, use char for more
compact index entries, and to increase the number of distribution
page entries.

Dropping and Rebuilding Indexes

You might drop nonclustered indexes prior to a major set of inserts,
and then rebuild them afterwards. In that way, the inserts and bulk
copies go faster, since the nonclustered indexes do not have to be
updated with every insert. See “Rebuilding Indexes” on page 6-41.

Choosing Fillfactors for Indexes

By default, SQL Server creates indexes that are completely full at the
leaf level and leaves room for two rows on the intermediate pages for
growth. The fillfactor option for the create index command allows you to

SQL Server Performance and Tuning Guide 6-45

Sybase SQL Server Release 11.0.x Choosing Fillfactors for Indexes

specify how full to create index pages and the data pages of clustered
indexes. Figure 6-12 illustrates a table with a fillfactor of 50 percent.

Figure 6-12: Table and clustered index with fillfactor set to 50 percent

If you are creating indexes for tables that will grow in size, you can
reduce the impact of page splitting on your tables and indexes by
using the fillfactor option for create index. Note that the fillfactor is used
only when you create the index; it is not maintained over time. The
purpose of fillfactor is to provide a performance boost for tables that
will experience growth; maintaining that fillfactor by continuing to
split partially full pages would defeat the purpose.

When you use fillfactor, except for a fillfactor value of 100 percent, data
and index rows are spread out across the disk space for the database
farther than they are by default.

Disadvantages of Using fillfactor

If you use fillfactor, especially a very low fillfactor, you may notice these
effects on queries and maintenance activities:

• More pages must be read for each query that does a table scan or
leaf-level scan on a nonclustered index. In some cases, it may also
add a level to an index’s B-tree structure, since there will be more
pages at the data level and possibly more pages at each index
level.

Page 945
Greane
Havier

Page 326
Heim
Ippolito

Page 786
Heim
Hill

Page 1243
Havier
Heemstra

Page 1019
Greane
Green

Page 1133
Green
Heim

Root Intermediate Data

6-46 Indexing for Performance

Choosing Fillfactors for Indexes Sybase SQL Server Release 11.0.x

• The number of pages that must be checked by your dbcc
commands increases, so these commands will take more time.

• The number of pages dumped with dump database increases. dump
database copies all pages that store data, but does not dump pages
that are not yet in use. Your dumps and loads will take longer to
complete and possibly use more tapes.

• Fillfactors fade away over time. If you use fillfactor only to help
reduce the performance impact of lock contention on index rows,
you may wish to use max_rows_per_page instead. If you use fillfactor
to reduce the performance impact of page splits, you need to
monitor your system and re-create indexes when page splitting
begins to hurt performance.

Advantages of Using fillfactor

Setting fillfactor to a low value provides a temporary performance
enhancement. Its benefits fade away as inserts to the database
increase the amount of space used on data pages. The benefits are
that a lower fillfactor:

• Reduces page splits.

• Can reduce lock contention, since it reduces the likelihood that
two processes will need the same data or index page
simultaneously.

• Can help maintain large I/O efficiency for the data pages and for
the leaf levels of nonclustered indexes, since page splits occur less
frequently. This means that a set of eight pages on an extent are
likely to be read sequentially.

Using sp_sysmon to Observe the Effects of Changing fillfactor

sp_sysmon generates output that allows you to observe how different
fillfactor values affect system performance. Pay particular attention to
the performance categories in the output that are most likely to be
affected by changes in fillfactor: page splits and lock contention.

See Chapter 19, “Monitoring SQL Server Performance with
sp_sysmon” and the topics “Lock Management” on page 19-40 and
“Page Splits” on page 19-36 in that chapter.

SQL Server Monitor, a separate Sybase product, can pinpoint where
problems are at the object level.

SQL Server Performance and Tuning Guide 7-1

7 The SQL Server Query Optimizer 7.

What Is Query Optimization?

Query optimization is the process of analyzing individual queries to
determine what resources they use and whether the use of resources
can be reduced. For any query, you need to understand how it
accesses database objects, the size of the objects, and indexing on the
tables in order to determine whether it is possible to improve the
query’s performance. This material was covered in Chapters 2–6.

The final component for query optimization is understanding the
query optimizer itself and learning to use the query-analysis
reporting tools.

Symptoms of Optimization Problems

Some symptoms of optimization problems are:

• A query runs more slowly than you expect, based on indexes and
table size.

• A query runs more slowly than similar queries.

• A query suddenly starts running more slowly than usual.

• A query processed within a stored procedure takes longer than
when it is processed as an ad hoc statement.

• The query plan shows the use of a table scan when you expect it
to use an index.

Sources of Optimization Problems

Some sources of optimization problems are:

• Statistics have not been updated recently, so that actual data
distribution does not match the values that SQL Server uses to
optimize queries.

• The where clause is causing the optimizer to select an
inappropriate strategy.

• The rows that will be referenced by a given transaction do not fit
the pattern reflected by the index statistics.

• An index is being used to access a large portion of the table.

7-2 The SQL Server Query Optimizer

SQL Server’s Cost-Based Optimizer Sybase SQL Server Release 11.0.x

• No appropriate index exists for a critical query.

• A stored procedure was compiled before significant changes to
the underlying tables were performed.

SQL Server’s Cost-Based Optimizer

The optimizer is the part of SQL Server’s code that examines parsed
and normalized queries and information about database objects. The
input to the optimizer is a parsed SQL query; the output from the
optimizer is a query plan. The query plan is the ordered set of steps
required to carry out the query, including the methods (table scan,
index choice, and so on) to access each table. A query plan is
compiled code that is ready to run.

The SQL Server optimizer finds the best query plan—the plan that is
least costly in terms of time. For many Transact-SQL queries, there
are many possible query plans. The optimizer reviews all possible
plans and estimates the cost of each plan. SQL Server selects the least
costly plan, and compiles and executes it.

Figure 7-1: Query execution steps

titleauthor

titles
Compile

Optimize

Parse and
Normalize

Query

Results

Execute

Optimize

Compile authorsCaches

Indexes

Tables

SQL Server Performance and Tuning Guide 7-3

Sybase SQL Server Release 11.0.x SQL Server’s Cost-Based Optimizer

Steps in Query Processing

When you execute a Transact-SQL query, SQL Server processes it in
these steps:

1. The query is parsed and normalized. The parser ensures that the
SQL syntax is correct and that all the objects referenced in the
query exist.

2. The query is optimized. It is analyzed, and the best query plan is
chosen:

- Each table is analyzed

- Cost of each index is estimated

- Join order is chosen

- Final access method is determined

3. The chosen query plan is compiled.

4. The query is executed, and the results are returned to the user.

Working with the Optimizer

The goal of the optimizer is to select the access method that reduces
the total time needed to process a query. The optimizer bases its
choice on the contents of the tables being queried and other factors
such as cache strategies, cache size, and I/O size. Since disk access is
generally the most expensive operation, the most important task in
optimizing queries is to provide the optimizer with appropriate
index choices, based on the transactions to be performed.

SQL Server’s cost-based query optimizer has evolved over many
years, taking into account many different issues. However, because
of its general-purpose nature, the optimizer may select a query plan
that is different from the one you expect. In certain situations, it may
make the incorrect choice of access methods. In some cases, this may
be the result of inaccurate or incomplete information. In other cases,
additional analysis and the use of special query processing options
can determine the source of the problem and provide solutions or
workarounds. Chapter 9, “Advanced Optimizing Techniques”
describes additional tools for debugging problems like this.

7-4 The SQL Server Query Optimizer

SQL Server’s Cost-Based Optimizer Sybase SQL Server Release 11.0.x

How Is “Fast” Determined?

Knowing what the optimizer considers to be fast and slow can
significantly improve your understanding of the query plan chosen
by the optimizer. The significant costs in query processing are:

• Physical I/Os, when pages must be read from disk

• Logical I/Os, when pages in cache must be read repeatedly for a
query

For queries with order by clauses or distinct, the optimizer adds the
physical and logical I/O cost for performing sorts to the cost of the
physical and logical I/O to read data and index pages.

The optimizer assigns 18 as the cost of a physical I/O and 2 as the
cost of a logical I/O. Some operations using worktables use 5 as the
cost of writing to the worktable. These are relative units of cost and
do not represent time units such as milliseconds or ticks.

Query Optimization and Plans

Query plans consist of retrieval tactics and an ordered set of
execution steps to retrieve the data needed by the query. In
developing query plans, the optimizer examines:

• The size of each table in the query, both in rows and data pages.

• The size of the available data cache, the size of I/O supported by
the cache, and the cache strategy to be used.

• The indexes, and the types of indexes, that exist on the tables and
columns used in the query.

• Whether the index covers the query, that is, whether the query
can be satisfied by retrieving data from index keys without
having to access the data pages. SQL Server can use indexes that
cover queries even if no where clauses are included in the query.

• The density and distribution of keys in the indexes. SQL Server
maintains statistics for index keys. See “Index Statistics” on page
6-35 for more information on index statistics.

• The estimated cost of physical and logical reads and cost of
caching.

• Optimizable join clauses and the best join order, considering the
costs and number of table scans required for each join and the
usefulness of indexes in limiting the scans.

SQL Server Performance and Tuning Guide 7-5

Sybase SQL Server Release 11.0.x Diagnostic Tools for Query Optimization

• Where there are no useful indexes, whether building a worktable
(an internal, temporary table) with an index on the join columns
would be faster than repeated table scans.

• Whether the query contains a max or min aggregate that can use an
index to find the value without scanning the table.

• Whether the pages will be needed repeatedly to satisfy a query
such as a join or whether a fetch-and-discard strategy can be
employed because the pages need to be scanned only once.

For each plan, the optimizer determines the total cost in
milliseconds. SQL Server then uses the best plan.

Stored procedures and triggers are optimized when the object is first
executed, and the query plan is stored in cache. If other users execute
the same procedure while an unused copy of the plan resides in
cache, the compiled query plan is copied in cache rather than being
recompiled.

Diagnostic Tools for Query Optimization

SQL Server provides the following diagnostic tools for query
optimization:

• set showplan on displays the steps performed for each query in a
batch. It is often used with set noexec on, especially for queries that
return large numbers of rows.

• set statistics io on displays the number of logical and physical reads
and writes required by the query. This tool is described in
Chapter 6, “Indexing for Performance.”

• set statistics subquerycache on displays the number of cache hits and
misses and the number of rows in the cache for each subquery.
See “Displaying Subquery Cache Information” on page 7-31 for
examples.

• set statistics time on displays the time it takes to parse and compile
each command. It displays the time it takes to execute each step
of the query. The “parse and compile” and “execution” times are
given in timeticks, the exact value of which is machine-
dependent. The “elapsed time” and “cpu time” are given in
milliseconds. See “Using set statistics time” on page 7-7 for more
information.

• dbcc traceon(302) provides additional information about why
particular plans were chosen, and is often used in cases when the
optimizer chooses plans that seem incorrect.

7-6 The SQL Server Query Optimizer

Diagnostic Tools for Query Optimization Sybase SQL Server Release 11.0.x

You can use many of these options at the same time, but some of
them suppress others, as described below.

showplan, statistics io, and other commands produce their output while
stored procedures are run. The system procedures that you might
use for checking table structure or indexes as you test optimization
strategies can produce voluminous output. You may want to have
hard copies of your table schemas and index information or you can
use separate windows for running system procedures such as
sp_helpindex.

For longer queries and batches, you may want to save showplan and
statistics io output in files. The “echo input” flag to isql echoes the input
into the output file, with line numbers included. The syntax is:

UNIX, Windows NT, and OS/2

isql -P password -e -i input_file -o outputfile

Novell NetWare

load isql -P password -e -i input_file
 -o outputfile

VMS

isql /password = password
 /echo
 /input = inputfile
 /output = outputfile

Using showplan and noexec Together

showplan is often used in conjunction with set noexec on, which
prevents the SQL statements from being executed. Be sure to issue
the showplan command, or any other set commands, before the noexec
command. Once you issue set noexec on, the only command that SQL
Server executes is set noexec off. This example shows the correct order:

set showplan on
set noexec on
go
select au_lname, au_fname
 from authors
 where au_id = "A137406537"
go

SQL Server Performance and Tuning Guide 7-7

Sybase SQL Server Release 11.0.x Diagnostic Tools for Query Optimization

noexec and statistics io

While showplan and noexec make useful companions, noexec stops all
the output of statistics io. The statistics io command reports actual disk
I/O; while noexec is on, no I/O takes place, so the reports are not
printed.

Using set statistics time

set statistics time displays information about the time it takes to execute
SQL Server commands. It prints these statistics:

• Parse and compile time – the number of CPU ticks taken to parse,
optimize, and compile the query.

• Execution time – the number of CPU ticks taken to execute the
query.

• SQL Server CPU time – the number of CPU ticks taken to execute
the query, converted to milliseconds.

To see the clock_rate for your system, execute:

sp_configure "sql server clock tick length"

See “sql server clock tick length” on page 11-96 of the System
Administration Guide for more information.

• SQL Server elapsed time – the elapsed time is the difference
between the time the command started and the current time, as
taken from the operating system clock, in milliseconds.

The following formula converts ticks to milliseconds:

Figure 7-2: Formula for converting ticks to milliseconds

select type, sum(advance)
from titles t, titleauthor ta, authors a,
publishers p
where t.title_id = ta.title_id
 and ta.au_id = a.au_id
 and p.pub_id = t.pub_id
 and (a.state = "NY” or a.state ="CA")
 and p.state != "NY"
group by type
having max(total_sales) > 100000

CPU_ticks * clock_rate

1000
Milliseconds =

7-8 The SQL Server Query Optimizer

Optimizer Strategies Sybase SQL Server Release 11.0.x

The following output shows that the query was parsed and compiled
in one clock tick, or 100 ms. It took 120 ticks, or 12,000 ms., to execute.
Total elapsed time was 17,843 ms., indicating that SQL Server spent
some time processing other tasks or waiting for disk or network I/O
to complete.

Parse and Compile Time 1.
SQL Server cpu time: 100 ms.
 type
 ------------ ------------------------
 UNDECIDED 210,500.00
 business 256,000.00
 cooking 286,500.00
 news 266,000.00

Execution Time 120.
SQL Server cpu time: 12000 ms. SQL Server elapsed time: 17843 ms.

Optimizer Strategies

The following sections explain how the optimizer analyzes these
specific types of queries:

• Search arguments in the where clause

• Joins

• Queries using or clauses and the in (values_list) predicate

• Aggregates

• Subqueries

• Updates

Search Arguments and Using Indexes

It is important to distinguish between where clause specifications that
are used as search arguments to find query results via indexes and
those that are used later in query processing. This distinction creates
a finer definition for search argument:

• Search arguments, or SARGs, can be used to determine an access
path to the data rows. They match index keys and determine
which indexes are used to locate and retrieve the matching data
rows.

• Other selection criteria are additional qualifications that are
applied to the rows after they have been located.

SQL Server Performance and Tuning Guide 7-9

Sybase SQL Server Release 11.0.x Search Arguments and Using Indexes

Consider this query, with an index on au_lname, au_fname:

select au_lname, au_fname, phone
 from authors
 where au_lname = "Gerland"
 and city = "San Francisco"

The clause:

au_lname = "Gerland"

qualifies as a SARG because:

• There is an index on au_lname.

• There are no functions or other operations on the column name.

• The operator is a valid SARG operator.

• The datatype of the constant matches the datatype of the column.

The clause:

city = "San Francisco"

matches all the criteria above except the first. There is no index on the
city column. In this case, the index on au_lname would probably be
used as the search argument for the query. All pages with a matching
author name are brought into cache, and each matching row is
examined to see if the city also matches.

One of the first steps the optimizer performs is to separate the SARGs
from other qualifications on the query so that it can cost the access
methods for each SARG.

SARGs in where Clauses

The optimizer looks for SARGs in the where clauses of a query and for
indexes that match the columns. If your query uses one or more of
these clauses to scan an index, you will see the showplan output “Keys
are: <keylist>” immediately after the index name information. If you
think your query should be using an index, and it causes table scans
instead, look carefully at the search clauses and operators.

Indexable Search Argument Syntax

Indexable search arguments are expressions one of these forms:

<column> <operator> <expression>

<expression> <operator> <column>

<column> is null

7-10 The SQL Server Query Optimizer

Search Arguments and Using Indexes Sybase SQL Server Release 11.0.x

The column must be only a column name. Functions, expressions, or
concatenation added to the column name always require a table
scan.

The operator must be one of the following:

 =, >, <, >=, <=, !>, !<, <>, !=, is null.

The expression can be a constant or an expression that evaluates to a
constant. The optimizer uses the index statistics differently,
depending on whether the value of the expression is a constant or an
expression:

• If the expression is a constant, its value is known when the query
is optimized. It can be used by the optimizer to look up values in
the index statistics.

• If the value of the expression is not known at compile time, the
optimizer uses the density from the distribution page to estimate
the number of rows that the query returns. The value of variables,
mathematical expressions, concatenation and functions cannot
be known until the query is executed.

The non-equality operators < > and != are special cases. The optimizer
can check for covering nonclustered indexes on the column name,
and perform a nonmatching index scan if the index covers the query,
but these queries cannot use indexes to limit the number of rows that
must be examined or to position a search.

Search Argument Equivalents

The optimizer looks for equivalents that it can convert to SARGs.
These are listed in Table 7-1.

Table 7-1: SARG equivalents

Clause Conversion

between Converted to >= and <= clauses.

like If the first character in the pattern is a constant, like clauses can
be converted to greater than or less than queries. For example,
like "sm%" becomes >= "sm" and < "sn". The expression like "%x" is
not optimizable.

 expressions If the right-hand portion of the where clause contains arithmetic
expressions that can be converted to a constant, the optimizer
can use the density values, and may use the index, but cannot
use the distribution table on the index.

SQL Server Performance and Tuning Guide 7-11

Sybase SQL Server Release 11.0.x Search Arguments and Using Indexes

The following are some examples of optimizable search arguments:

au_lname = "Bennett"

price >= $12.00

advance > 10000 and advance < 20000

au_lname like "Ben%" and price > $12.00

These search arguments are optimizable, but use only the density,
not the distribution values from the index statistics:

salary = 12 * 3000

price = @value

The following arguments are not optimizable search arguments:

salary = commission /*both are column names*/

advance * 2 = 5000 /*expression on column side
 not permitted */

advance = $10000
 or price = $20.00 /*see "OR strategy" */

substring(au_lname,1,3) = "Ben" /* no functions on
 column name */

Guidelines for Creating Search Arguments

Use these guidelines when you write search arguments for your
queries:

• Avoid functions, arithmetic operations, and other expressions on
the column side of search clauses.

• Avoid incompatible datatypes.

• Use the leading column of a composite index. The optimization of
secondary keys provides less performance.

• Use all the search arguments you can to give the optimizer as
much as possible to work with.

• Check showplan output to see which keys and indexes are used.

Figure 7-3 shows how predicates are applied by the optimizer and in
query execution, and questions to ask when examining predicates
and index choices.

7-12 The SQL Server Query Optimizer

Search Arguments and Using Indexes Sybase SQL Server Release 11.0.x

Figure 7-3: SARGs and index choices

Adding SARGs to Help the Optimizer

Providing the optimizer as with much information as possible for
every table in the query gives the optimizer more choices. Consider
the following three queries. The titles and titleauthor tables are in a
one-to-many (1:M) relationship. title_id is unique in the titles table.
The first query, with the SARG on titles, would probably perform
better than the second query, with the SARG on titleauthor.

The third query, with SARGs provided for both tables, gives the
optimizer more flexibility in the optimization of the join order.

Is this predicate in the right
form for a SARG?

Is there an index on the
column?

Is this the best index
available for the query?

Use this index to retrieve
data pages and qualify rows.

Use this predicate to qualify
rows.

N

N

N

Y

Y

Y

Optimizer

Query Execution

Tuning Questions

Can the form of the predicate be
changed so that it can use an index?

Can an index be created or changed so
that the query requires fewer I/Os than
with existing indexes?

Is performance acceptable using this
index, or does more work on indexing
need to be done?

How many rows did this index qualify,
and how many I/Os did it require?

How many of the rows qualified by the
index are not qualified by this
predicate?

SQL Server Performance and Tuning Guide 7-13

Sybase SQL Server Release 11.0.x Optimizing Joins

1. select au_lname, title
from titles t, titleauthor ta, authors a
where t.title_id = ta.title_id
 and a.au_id = ta.au_id
 and t.title_id = "T81002"

2. select au_lname, title
from titles t, titleauthor ta, authors a
where t.title_id = ta.title_id
 and a.au_id = ta.au_id
 and ta.title_id = "T81002"

3. select au_lname, title
from titles t, titleauthor ta, authors a
where t.title_id = ta.title_id
 and a.au_id = ta.au_id
 and t.title_id = "T81002"
 and ta.title_id = "T81002"

Optimizing Joins

Joins pull information from two or more tables, requiring nested
iterations on the tables involved. In a two-table join, one table is
treated as the outer table; the other table becomes the inner table.
SQL Server examines the outer table for rows that satisfy the query
conditions. For each row that qualifies, SQL Server must then
examine the inner table, looking at each row where the join columns
match.

Optimizing the join columns in queries is extremely important.
Relational databases make extremely heavy use of joins. Queries that
perform joins on several tables are especially critical, as explained in
the following sections.

Some subqueries are also converted to joins. These are discussed on
page 7-27.

Join Syntax

Join clauses take the form:

table1.column_name <operator> table2.column_name

The join operators are:

=, >, >=, <, <=, !>, !<, !=, <>, *=, =*

7-14 The SQL Server Query Optimizer

Optimizing Joins Sybase SQL Server Release 11.0.x

How Joins Are Processed

When the optimizer creates a query plan for a join query:

• It determines which index to use for each table.

• If there is no useful index on the inner table of a join, the
optimizer may decide to build a temporary index, a process
called reformatting. See “Saving I/O Using the Reformatting
Strategy” on page 7-17.

• It determines the join order, basing the decision on the total cost
estimates for the possible join orders.

• It determines the I/O size and caching strategy. If an unindexed
table is small, it may decide to read the entire table into cache.

Factors such as indexes and density of keys, which determine costs
on single-table selects, become much more critical for joins.

Basic Join Processing

The process of creating the result set for a join is to nest the tables,
and to scan the inner tables repeatedly for each qualifying row in the
outer table.

Figure 7-4: Nesting of tables during a join

In Figure 7-4, the access to the tables to be joined is nested:

• TableA is accessed once.

For each qualifying row in TableA
For each qualifying row in TableB

For each qualifying row in TableC
Solve constant query

Outer TableA

Inner TableB Innermost
TableC

SQL Server Performance and Tuning Guide 7-15

Sybase SQL Server Release 11.0.x Optimizing Joins

• TableB is accessed once for each qualifying row in TableA.

• TableC is accessed once for each qualifying row in TableB, each
time that TableB is accessed.

For example, if 15 rows from TableA match the conditions in the
query, TableB is accessed 15 times. If 20 rows from TableB match for
each matching row in TableA, then TableC is scanned 300 times. If
TableC is small, or has a useful index, the I/O count stays reasonably
small. If TableC is large and unindexed, the optimizer may choose to
use the reformatting strategy to avoid performing extensive I/O.

Choice of Inner and Outer Tables

The outer table is usually the one that has:

• The smallest number of qualifying rows, and/or

• The largest numbers of reads required to locate rows.

The inner table usually has:

• The largest number of qualifying rows, and/or

• The smallest number of reads required to locate rows.

For example, when you join a large, unindexed table to a smaller
table with indexes on the join key, the optimizer chooses:

• The large table as the outer table. It will only have to read this
large table once.

• The indexed table as the inner table. Each time it needs to access
the inner table, it will take only a few reads to find rows.

Figure 7-5 shows a large, unindexed table and a small, indexed table.

7-16 The SQL Server Query Optimizer

Optimizing Joins Sybase SQL Server Release 11.0.x

Figure 7-5: Alternate join orders and page reads

If TableA is the outer table, it is accessed via a table scan. When the
first qualifying row is found, the clustered index on TableB is used to
find the row or rows where TableB.col1 matches the value retrieved
from TableA. When that completes, the scan on TableA continues until
another match is found. The clustered index is used again to retrieve
the next set of matching rows from TableB. This continues until TableA
has been completely scanned. If 10 rows from TableA match the
search criteria, the number of page reads required for the query is:

If TableB is the outer table, the clustered index is used to find the first
row that matches the search criteria. Then, TableA is scanned to find
the rows where TableA.col1 matches the value retrieved from TableB.
When the table scan completes, another row is read from the data
pages for TableB, and TableA is scanned again. This continues until all

Pages Read

Table scan of TableA 100,000

10 clustered index accesses of TableB + 30

Total 100,030

Table A:
1,000,000 rows
10 rows per page
100,000 pages
No index

Table B:
100,000 rows
10 rows per page
10,000 pages
Clustered index on join
column

select TableA.colx, TableB.coly
from TableA, TableB
where TableA.col1 = TableB.col1
 and TableB.col2 = "anything"
 and TableA.col2 = "something"

SQL Server Performance and Tuning Guide 7-17

Sybase SQL Server Release 11.0.x Optimizing Joins

matching rows have been retrieved from TableB. If there are 10 rows
in TableB that match, this access choice would require the following
number of page reads:

Saving I/O Using the Reformatting Strategy

Adding another large, unindexed table to the query in Figure 7-5
would create a huge volume of required page reads. If the new table
also contained 100,000 pages, for example, and contained 20
qualifying rows, TableA would need to be scanned 20 times, at a cost
of 100,000 reads each time. The optimizer costs this plan, but also
costs a process called reformatting. It can create a temporary
clustered index on the join column for the inner table.

The steps in the reformatting strategy are:

• Creating a worktable

• Inserting all of the needed columns from the qualifying rows

• Creating a clustered index on the join columns of the worktable

• Using the clustered index in the join to retrieve the qualifying
rows from each table.

The main cost of the reformatting strategy is the time and I/O
necessary to create the worktable and to build the clustered index on
the worktable. SQL Server uses reformatting only when this cost is
cheaper than the cost of joining the tables by repeatedly table-
scanning the table.

Index Density and Joins

For any join using an index, the optimizer uses a statistic called the
density to help optimize the query. The density is the average
proportion of duplicate keys in the index. It varies between 0 percent
and 100 percent. An index whose keys are all duplicates of each other
will have a density of 100 percent, while an index with N rows,
whose keys are all unique, will have a density of 1/N.

Pages Read

1 clustered index access of TableB + 3

10 table scans of TableA 1,000,000

Total 1,000,003

7-18 The SQL Server Query Optimizer

Optimizing Joins Sybase SQL Server Release 11.0.x

The query optimizer uses the density to estimate the number of rows
that will be returned for each scan of the inner table of a join for a
particular index. For example, if the optimizer is considering a join
with a 10,000-row table, and an index on the table has a density of 25
percent, the optimizer would estimate 2500 rows per scan for a join
using that index.

SQL Server maintains a density for each prefix of columns in
composite indexes. That is, it keeps a density on the first column, the
first and second columns, the first, second, and third columns, and so
on, up to and including the entire set of columns in the index. The
optimizer uses the appropriate density for an index when estimating
the cost of a join using that index. In a 10,000-row table with an index
on seven columns, the entire seven-column key might have a density
of 1/10,000, while the first column might have a density of only 1/2,
indicating that it would return 5000 rows.

The densities on an index are part of the statistics that are maintained
by the create index and update statistics commands.

If statistics are not available, the optimizer uses default percentages:

For example, if there is no statistics page for an index on authors(city),
the optimizer estimates that 10 percent of the rows must be returned
for this query:

select au_fname, au_lname, pub_name
 from authors a, publishers p
 where a.city = p.city

Table 7-2: Default density percentages

Condition Examples Default

Equality col = x 10 percent

Closed interval col > x and col < y
col >= x and col <= y
col between x and y

25 percent

Open end range col > x
col >= x
col < x
col <= x

33 percent

SQL Server Performance and Tuning Guide 7-19

Sybase SQL Server Release 11.0.x Optimizing Joins

Datatype Mismatches and Joins

One of the most common problems in optimizing joins on tables that
have indexes is that the datatypes of the join columns are
incompatible. When this occurs, one of the datatypes must be
implicitly converted to the other using SQL Server’s datatype
hierarchy. Datatypes that are lower in the hierarchy are always
converted to higher types.

Some examples where problems frequently arise are:

• Joins between char not null with char null or varchar. A char
datatype that allows null values is stored internally as a varchar.

• Joins using numeric datatypes such as int and float. Allowing null
values is not a problem with numeric datatypes in joins.

To avoid these problems, make sure that datatypes are exactly the
same when creating tables. This includes use of nulls for char, and
matching precision and scale for numeric types. See “Joins and
Datatypes” on page 10-6 for more information and for workarounds
for existing tables.

Join Permutations

When you are joining four or fewer tables, SQL Server considers all
possible permutations of the four tables. It establishes this cutoff
because the number of permutations of join orders multiplies with
each additional table, requiring lengthy computation time for large
joins.

The method the optimizer uses to determine join order has excellent
results for most queries with much less CPU time than examining all
permutations of all combinations. The set table count command allows
you to specify the number of tables that the optimizer considers at
once. See “Increasing the Number of Tables Considered by the
Optimizer” on page 9-7.

Joins in Queries with More Than Four Tables

Changing the order of the tables in the from clause normally has no
effect on the query plan, even on tables that join more than four
tables.

When you have more than four tables in the from clause, SQL Server
optimizes each subset of four tables. Then, it remembers the outer

7-20 The SQL Server Query Optimizer

Optimizing Joins Sybase SQL Server Release 11.0.x

table from the best plan involving four tables, eliminates it from the
set of tables in the from clause, and optimizes the best set of four tables
out of the remaining tables. It continues until only four tables remain,
at which point it optimizes those four tables normally.

For example, suppose you have a select statement with the following
from clause:

 from T1, T2, T3, T4, T5, T6

The optimizer looks at all possible sets of 4 tables taken from these 6
tables. The 15 possible combinations of all 6 tables are:

T1, T2, T3, T4
T1, T2, T3, T5
T1, T2, T3, T6
T1, T2, T4, T5
T1, T2, T4, T6
T1, T2, T5, T6
T1, T3, T4, T5
T1, T3, T4, T6
T1, T3, T5, T6
T1, T4, T5, T6
T2, T3, T4, T5
T2, T3, T4, T6
T2, T3, T5, T6
T2, T4, T5, T6
T3, T4, T5, T6

For each one of these combinations, the optimizer looks at all the join
orders (permutations). For example, for the set of tables T2, T3, T5,
T6, there are 24 possible join orders or permutations for this
combination of 4 tables. SQL Server looks at these 24 possible orders:

T2, T3, T5, T6
T2, T3, T6, T5
T2, T5, T3, T6
T2, T5, T6, T3
T2, T6, T3, T5
T2, T6, T5, T3
T3, T2, T5, T6
T3, T2, T6, T5
T3, T5, T2, T6
T3, T5, T6, T2
T3, T6, T2, T5
T3, T6, T5, T2
T5, T2, T3, T6
T5, T2, T6, T3

SQL Server Performance and Tuning Guide 7-21

Sybase SQL Server Release 11.0.x Optimizing Joins

T5, T3, T2, T6
T5, T3, T6, T2
T5, T6, T2, T3
T5, T6, T3, T2
T6, T2, T3, T5
T6, T2, T5, T3
T6, T3, T2, T5
T6, T3, T5, T2
T6, T5, T2, T3
T6, T5, T3, T2

Let’s say that the best join order is:

T5, T3, T6, T2

At this point, T5 is designated as the outermost table in the query.

The next step is to choose the second-outermost table. The optimizer
eliminates T5 from consideration as it chooses the rest of the join
order. Now, it has to determine where T1, T2, T3, T4, and T6 fit into
the rest of the join order. It looks at all the combinations of four tables
chosen from these five:

T1, T2, T3, T4
T1, T2, T3, T6
T1, T2, T4, T6
T1, T3, T4, T6
T2, T3, T4, T6

It looks at all the join orders for each of these combinations,
remembering that T5 is the outermost table in the join. Let’s say that
the best order in which to join the remaining tables to T5 is T3, T6, T2,
T4.

So T3 is chosen as the next table after T5 in the join order for the entire
query. T3 is eliminated from consideration in choosing the rest of the
join order.

The remaining tables are:

T1, T2, T4, T6

Now we’re down to four tables, so it looks at all the join orders for all
the remaining tables. Let’s say the best join order is:

T6, T2, T4, T1

This means that the join order for the entire query is:

T5, T3, T6, T2, T4, T1

Even though SQL Server looks at the join orders for only four tables
at a time, the fact that the optimizer does this for all combinations of

7-22 The SQL Server Query Optimizer

Optimization of or clauses and in (values_list) Sybase SQL Server Release 11.0.x

four tables that appear in the from clause makes the order of tables in
the from clause irrelevant.

The only time that the order of tables in the from clause can make any
difference is when the optimizer comes up with the same cost
estimate for two join orders. In that case, it chooses the first of the two
join orders that it encounters. The order of tables in the from clause
affects the order in which the optimizer evaluates the join orders, so
in this one case, it can have an effect on the query plan. Notice that it
does not have an effect on the query cost, or on the query
performance.

Optimization of or clauses and in (values_list)

Optimization of queries that contain or clauses or an in (values_list)
clause depend on the indexes that exist on the tables named in these
clauses, and whether it is possible for the set of clauses to result in
duplicate values.

or syntax

or clauses take the form:

where column_name1 = <value>
 or column_name1 = <value>

or:

where column_name1 = <value>
 or column_name2 = <value>

in (values_list) Converts to or Processing

The parser converts in lists to or clauses, so this query:

select title_id, price
 from titles
 where title_id in ("PS1372", "PS2091","PS2106")

becomes:

select title_id, price
 from titles
 where title_id = "PS1372"
 or title_id = "PS2091"
 or title_id = "PS2106"

SQL Server Performance and Tuning Guide 7-23

Sybase SQL Server Release 11.0.x Optimization of or clauses and in (values_list)

How or Clauses Are Processed

A query using or clauses is a union of more than one query. Although
some rows may match more than one of the conditions, each row
must be returned only once.

If any of the columns used in an or clause or the column in the in
clause are not indexed, the query must use a table scan. If indexes
exist on all of the columns, the optimizer chooses one of two
strategies:

• Multiple matching index scans

• A special strategy called the OR strategy

The example in Figure 7-6 on page 7-24 shows two or clauses, with
row that satisfies both conditions. This query must be resolved by the
OR strategy.

On the other hand, this query cannot return any duplicate rows:

select title
from titles
where title_id in (“T6650", "T95065", "T11365")

This query can be resolved using multiple matching index scans.

The optimizer determines which index to use for each or clause or
value in the in (values_list) clause by costing each clause or value
separately. If each column named in a clause is indexed, a different
index can be used for each clause or value. If any of the clauses is not
indexed, the query must perform a table scan.

If the query performs a table scan, the conditions are applied to each
row as the pages are scanned.

If the query performs a multiple matching index scan, the query uses
the appropriate index for each or clause or value in the in list, and
returns the rows to the user as data rows are accessed.

If the query must use the special OR strategy because the query
could return duplicate rows, the query uses the appropriate index,
but first retrieves all the row IDs for rows that satisfy each or clause
and stores them in a worktable in tempdb. SQL Server then sorts the
worktable to remove the duplicate row IDs. In showplan output, this
worktable is called a dynamic index. The row IDs are used to
retrieve the rows from the base tables.

Figure 7-6: Resolving or queries illustrates the process of building and
sorting a dynamic index for this query:

7-24 The SQL Server Query Optimizer

Optimization of or clauses and in (values_list) Sybase SQL Server Release 11.0.x

Figure 7-6: Resolving or queries

The optimizer estimates the cost index access for each clause in the
query. For queries with or clauses on different columns in the same
table, SQL Server can choose to use a different index for each clause.
The query uses a table scan if either of these conditions is true:

• The cost of all the index accesses is greater than the cost of a table
scan.

• At least one of the clauses names a column that is not indexed, so
the only way to resolve the clause is to perform a table scan.

Queries in cursors cannot use the OR strategy, and must perform a
table scan. However, queries in cursors can use the multiple
matching index scans strategy.

Locking and the OR Strategy

During a select operation, the OR strategy maintains a shared lock on
all of the accessed pages during the entire operation, since the row
ID’s cannot change until the rows are returned to the user. For
extremely long sets of or clauses or in (values_list) sets, this can affect

Page Row
1537 1
1537 2
1537 2
1537 3
1537 4
1538 1
1538 3

title price...

Find rows on Save results Sort and
remove duplicates

Page 1537
Backwards 4 ...
Computer 5 ...
Forwards 5 ...
Optional 7 ...

Page 1538
Databases 12 ...
After 15 ...
Computers 20 ...
Perform 22 ...

Page Row
1537 1
1537 2
1537 3
1537 4
1537 2
1538 1
1538 3

Rows from price clause

Rows from title clause

data pages in a worktable

select title_id, price
 from titles
 where price < $15
 or title like "Compute%"

SQL Server Performance and Tuning Guide 7-25

Sybase SQL Server Release 11.0.x Optimizing Aggregates

concurrency, since it limits access of other users. Be especially careful
of queries that use the OR strategy if you are using isolation level 3 or
the holdlock clause.

Optimizing Aggregates

Aggregates are processed in two steps:

• First, appropriate indexes are used to retrieve the appropriate
rows, or the table is scanned. For vector (grouped) aggregates, the
results are placed in a worktable. For scalar aggregates, results
are computed in a variable in memory.

• Second, the worktable is scanned to return the results for vector
aggregates, or the results are returned from the internal variable.

In many cases, aggregates can be optimized to use a composite
nonclustered index on the aggregated column and the grouping
column, if any, rather than performing table scans.

For example, if the titles table has a nonclustered index on type, price,
the following query retrieves its results from the leaf level of the
nonclustered index:

select type, avg(price)
 from titles
 group by type

Table 7-3 shows some of other optimization methods for aggregates.

Table 7-3: Optimization of aggregates of indexed columns

Function Access Method

min With no where or group by clause, uses first value on root
page of index.

max With no where or group by clause, follows last pointer on
index pages to last data page.

count(*) Counts all rows in nonclustered index with the smallest
number of leaf pages if there is no where clause, or in
covering index if there is a where clause. Table scans if there
is only a clustered index, or no index.

count(col_name) Counts non-null rows in nonclustered index with the
smallest number of leaf pages containing col_name; table
scan if only clustered index or no index.

7-26 The SQL Server Query Optimizer

Optimizing Subqueries Sybase SQL Server Release 11.0.x

Combining max and min Aggregates

When used separately, max and min aggregates on indexed columns
use special processing if there is no where clause in the query:

• min aggregates retrieve the first value on the root page of the
index, performing a single read to find the value.

• max aggregates follow the last entry on the last page at each index
level until they reach the leaf level. For a clustered index, the
number of reads required is the height of the index tree plus one
read for the data page. For a nonclustered index, the number of
reads required is the height of the index tree.

However, when min and max are used together, this optimization is
not available. The entire leaf level of a nonclustered index is scanned
to pick up the first and last values. If no nonclustered index exists, a
table scan is used if no nonclustered index includes the value. For
more discussion and a workaround, see “Aggregates” on page 10-5.

Optimizing Subqueries

➤ Note
This section describes SQL Server release 11.0 subquery processing. If

your stored procedures, triggers, and views were created on SQL Server

prior to release 11.0 and have not been dropped and re-created, they may

not use the same processing. See sp_procqmode in the SQL Server
Reference Manual for more information on determining the processing

mode.

Subqueries use the following special optimizations to improve
performance:

• Flattening – converting the subquery to a join

• Materializing – storing the subquery results in a worktable

• Short circuiting – placing the subquery last in the execution order

• Caching subquery results – recording the results of executions

The following sections explain these strategies. See “showplan
Messages for Subqueries” on page 8-36 for an explanation of the
showplan messages for subquery processing.

SQL Server Performance and Tuning Guide 7-27

Sybase SQL Server Release 11.0.x Optimizing Subqueries

Flattening in, any, and exists Subqueries

SQL Server can flatten some quantified predicate subqueries (those
introduced with in, any, or exists) to an existence join. Instead of the
usual nested iteration through a table that returns all matching
values, an existence join returns TRUE when it finds the first
matching value, and then stops processing. If no matching value is
found, it returns FALSE.

A subquery introduced with in, any, or exists is flattened to an
existence join unless:

• The outer query also uses or

• The subquery is correlated and contains one or more aggregates

All in, any, and exists queries test for the existence of qualifying values
and return TRUE as soon as a matching row is found.

Existence joins can be optimized as effectively as regular joins. The
major difference is that existence joins stop looking as soon as they
find the first match.

For example, the optimizer converts the following subquery to an
existence join:

select title
 from titles
 where title_id in
 (select title_id
 from titleauthor)
 and title like "A Tutorial%"

The join query looks like the following ordinary join, although it
does not return the same results:

select title
 from titles T, titleauthor TA
 where T.title_id = TA.title_id
 and title like "A Tutorial%"

In the pubtune database, two books match the search string on title.
Each book has multiple authors, so it has multiple entries in
titleauthor. A regular join returns five rows, but the subquery returns
only two rows, one for each title_id, since it stops execution of the join
at the first matching row.

7-28 The SQL Server Query Optimizer

Optimizing Subqueries Sybase SQL Server Release 11.0.x

Flattening Expression Subqueries

Expression subqueries are subqueries that are included in a query’s
select list or that are introduced by >, >=, <, <=, =, or !=. SQL Server
converts, or flattens, expression subqueries to equijoins if:

• The subquery joins on unique columns or returns unique
columns, and

• There is a unique index on the columns.

Materializing Subquery Results

In some cases, the subquery is materialized before the outer query is
executed. The subquery is executed in one step, and the results of
this execution are stored and then used in a second step. SQL Server
materializes these types of subqueries:

• Noncorrelated expression subqueries

• Quantified predicate subqueries containing aggregates where the
having clause includes the correlation condition

Noncorrelated Expression Subqueries

Noncorrelated expression subqueries must return a single value.

When the subquery is not correlated, it returns the same value,
regardless of the row being processed in the outer query. The
execution steps are:

• SQL Server executes the subquery and stores the result in an
internal variable.

• SQL Server substitutes the result value for the subquery in the
outer query.

The following query contains a noncorrelated expression subquery:

select title_id
from titles
where total_sales = (select max(total_sales)
 from ts_temp)

SQL Server transforms the query to:

select <internal_variable> = max(total_sales)
 from ts_temp

SQL Server Performance and Tuning Guide 7-29

Sybase SQL Server Release 11.0.x Optimizing Subqueries

select title_id
 from titles
 where total_sales = <internal_variable>

The search clause in the second step of this transformation can be
optimized. If there is an index on total_sales, the query can use it.

Quantified Predicate Subqueries Containing Aggregates

Some subqueries that contain vector (grouped) aggregates can be
materialized. These are:

• Noncorrelated quantified predicate subqueries

• Correlated quantified predicate subqueries correlated only in the
having clause

The materialization of the subquery results in these two steps:

• SQL Server executes the subquery first and stores the results in a
worktable.

• SQL Server joins the outer table to the worktable as an existence
join. In most cases, this join cannot be optimized because statistics
for the worktable are not available.

Materialization saves the cost of evaluating the aggregates once for
each row in the table. For example, this query:

select title_id
from titles
where total_sales in (select max(total_sales)
 from titles
 group by type)

Executes in these steps:

select maxsales = max(total_sales)
 into #work
 from titles
 group by type

select title_id
 from titles, #work
 where total_sales = maxsales

Short Circuiting

When there are where clauses in addition to a subquery, SQL Server
executes the subquery or subqueries last to avoid unnecessary
executions of the subqueries. Depending on the clauses in the query,

7-30 The SQL Server Query Optimizer

Optimizing Subqueries Sybase SQL Server Release 11.0.x

it is often possible to avoid executing the subquery because other
clauses have already determined whether the row is to be returned:

• If any and clauses are false, the row will not be returned.

• If any or clauses are true, the row will be returned.

In both of these cases, as soon as the status of the row is determined
by the evaluation of one clause, no other clauses need to be applied
to that row.

Subquery Introduced with an and Clause

When and joins the clauses, the evaluation of the list stops as soon as
any clause evaluates to FALSE.

This query contains two and clauses in addition to the subquery:

select au_fname, au_lname, title, royaltyper
from titles t, authors a, titleauthor ta
where t.title_id = ta.title_id
and a.au_id = ta.au_id
and advance >= (select avg(advance)
 from titles t2
 where t2.type = t.type)
and price > 100
and au_ord = 1

SQL Server orders the execution steps to evaluate the subquery last.
If a row does not meet an and condition, SQL Server discards the row
without checking any more and conditions and begins to evaluate the
next row, so the subquery is not processed unless the row meets all of
the and conditions.

Subquery Introduced with an or Clause

If the query’s where conditions are connected by or, evaluation stops
early if any clause is true, and the row is returned to the user without
evaluating the subquery.

This query contains two and clauses in addition to the subquery:

SQL Server Performance and Tuning Guide 7-31

Sybase SQL Server Release 11.0.x Optimizing Subqueries

select au_fname, au_lname, title
from titles t, authors a, titleauthor ta
where t.title_id = ta.title_id
and a.au_id = ta.au_id
and (advance > (select avg(advance)
 from titles t2
 where t.type = t2.type)
 or title = "Best laid plans"
 or price > $100)

Again, SQL Server reorders the query to evaluate the subquery last.
If a row meets the condition of the or clause, SQL Server does not
process the subquery and proceeds to evaluate the next row.

Subquery Results Caching

When it cannot flatten or materialize a subquery, SQL Server uses an
in-memory cache to store the results of each evaluation of the
subquery. The lookup key for the subquery cache is:

• The values in the correlation columns, plus

• The join column for quantified subqueries

While the query runs, SQL Server tracks the number of times a
needed subquery result is found in cache, called a cache hit. If the
cache hit ratio is high, it means that the cache is reducing the number
of times that the subquery executes. If the cache hit ratio is low, the
cache is not useful and it is reduced in size as the query runs.

Caching the subquery results improves performance when there are
duplicate values in the join columns or the correlation columns. It is
even more effective when the values are ordered, as in a query that
uses an index. Caching does not help performance when there are no
duplicate correlation values.

Displaying Subquery Cache Information

The set statistics subquerycache on command displays the number of
cache hits and misses and the number of rows in the cache for each
subquery.

select type, title_id
from titles
where price > all
 (select price
 from titles
 where advance < 15000)

7-32 The SQL Server Query Optimizer

Update Operations Sybase SQL Server Release 11.0.x

Statement: 1 Subquery: 1 cache size: 75 hits: 4925 misses: 75

If the statement includes subqueries on either side of a union, the
subqueries are numbered sequentially through both sides of the
union. For example:

select id from sysobjects a
where id = 1 and id =
 (select max(id)
 from sysobjects b where a.id = b.id)
union
select id from sysobjects a
where id = 1 and id =
 (select max(id)
 from sysobjects b where a.id = b.id)

Statement: 1 Subquery: 1 cache size: 1 hits: 0 misses: 1
Statement: 1 Subquery: 2 cache size: 1 hits: 0 misses: 1

Optimizing Subqueries

When queries containing subqueries are not flattened or
materialized:

• The outer query and each of the unflattened subqueries is
optimized one at time.

• The innermost subqueries (the most deeply nested) are
optimized first.

• The estimated buffer cache usage for each subquery is
propagated outward to help evaluate the I/O cost and strategy of
the outer queries.

In many queries that contain subqueries, a subquery is “attached” to
one of the outer table scans by a two-step process. First, the optimizer
finds the point in the join order where all the correlation columns are
available. Then, the optimizer searches from that point to find the
table access that qualifies the fewest rows and attaches the subquery
to that table. The subquery is then executed for each qualifying row
from the table it is attached to.

Update Operations

SQL Server handles updates in different ways, depending on the
changes being made to the data and the indexes used to locate the
rows. The two major types of updates are deferred updates and

SQL Server Performance and Tuning Guide 7-33

Sybase SQL Server Release 11.0.x Update Operations

direct updates. SQL Server performs direct updates whenever
possible.

Direct Updates

SQL Server performs direct updates in a single pass, as follows:

• Locates the affected index and data rows

• Writes the log records for the changes to the transaction log

• Makes the changes to the data pages and any affected index
pages

There are three techniques for performing direct updates: in-place
updates, cheap direct updates, and expensive direct updates.

Direct updates require less overhead than deferred updates and are
generally faster, as they limit the number of log scans, reduce
logging, save traversal of index B-trees (reducing lock contention),
and save I/O because SQL Server does not have to refetch pages to
perform modifications based on log records.

In-Place Updates

SQL Server performs in-place updates whenever possible.

When SQL Server performs an in-place update, subsequent rows on
the page do not move; the row IDs remain the same and the pointers
in the row offset table do not change.

For an in-place update, all the following requirements must be met:

• The row being changed must not change its length.

• The column being updated cannot be the key, or part of the key,
of a clustered index. Because the rows in a clustered index are
stored in key order, a change to the key almost always means that
the row changes location.

• The update statement does not include a join.

• The affected columns are not used for referential integrity.

• There cannot be a trigger on the column.

• The table cannot be replicated (via Replication Server).

Figure 7-7 shows an in-place update. The pubdate column is fixed
length, so the length of the data row does not change. The access

7-34 The SQL Server Query Optimizer

Update Operations Sybase SQL Server Release 11.0.x

method in this example could be a table scan or a clustered or
nonclustered index on title_id.

Figure 7-7: In-place update

An in-place update is the fastest type of update because a single
change is made to the data page, and all affected index entries are
updated by deleting the old index rows and inserting the new index
row. This affects only indexes whose keys change, since the page and
row locations do not change.

Cheap Direct Updates

If SQL Server cannot perform the update in place, it tries to perform
a cheap direct update—changing the row and rewriting it at the same
offset on the page. Subsequent rows on the page move up or down so
that the data remains contiguous on the page, but the row IDs remain
the same. The pointers in the row offset table change to reflect the
new locations.

For a cheap direct update, all the following requirements must be
met:

• The length of the data in the row changes, but the row still fits on
the same data page, or the row length does not change, but there
is a trigger on the table or the table is replicated.

• The column being updated cannot be the key, or part of the key,
of a clustered index. Because SQL Server stores the rows of a
clustered index in key order, a change to the key almost always
means that the row changes location.

• The update statement does not include a join.

Row offset table

update titles set pubdate = "Jun 30 1988"
where title_id = "BU1032"

Before

Page
header

216 156 56 32

Page 1001
Apr 15 1987
Jul 15 1988
Oct 23 1991

BU1054
BU1032
BU3128

216 156 56 32

Page 1001
Apr 15 1987
Jun 30 1988
Oct 23 1991

BU1054
BU1032
BU3128

BU2824 Dec 151991 BU2824 Dec 151991

After

SQL Server Performance and Tuning Guide 7-35

Sybase SQL Server Release 11.0.x Update Operations

• The affected columns are not used for referential integrity.

Figure 7-8: Cheap direct update

The update in Figure 7-8 changes the length of the second row from
20 to 100 bytes, so the row offsets change for the rows that follow it
on the page.

Cheap direct updates are almost as fast as in-place updates. They
require the same amount of I/O, but more processing. Two changes
are made to the data page (the row and the offset table). Any changed
index keys are updated by deleting old values and inserting new
values. This affects only indexes whose keys change, since the page
and row ID do not change.

Expensive Direct Updates

If the data does not fit on the same page, SQL Server performs an
expensive direct update, if possible. An expensive direct update

Length in Bytes

Row Before After

1 24 24

2 20 100

3 60 60

4 48 48

After

216 156 56 32

Page
header

136 76 56 32

Before

update titles set title = "Coping with Computer Stress in
the Modern Electronic Work Environment"
where title_id = "BU1032"

7-36 The SQL Server Query Optimizer

Update Operations Sybase SQL Server Release 11.0.x

deletes the data row, including all index entries, and then inserts the
modified row and index entries.

SQL Server uses a table scan or index to find the row in its original
location and then deletes the row. If the table has a clustered index,
SQL Server uses the index to determine the new location for the row;
otherwise, SQL Server inserts the new row at the end of the heap.

For an expensive direct update, all the following requirements must
be met:

• The length of a data row changes so that the row no longer fits on
the same data page and the row needs to move to a different page,
or the update affects key columns for the clustered index.

• The index used to find the row is not changed by the update.

• The update statement does not include a join.

• The affected columns are not used for referential integrity.

Figure 7-9: Expensive direct update

Expensive direct updates are the slowest type of direct update. The
delete is performed on one data page and the insert is performed on

Page 1133

136 76 56 32

update titles set title = "Coping with Computer
Stress in the Modern Electronic Work
Environment"
where title_id = "BU1032"

Before

After

Page 1144

56 32

Page 1133

56 32

SQL Server Performance and Tuning Guide 7-37

Sybase SQL Server Release 11.0.x Update Operations

a different data page. All index entries must be updated, since the
row location changes.

Deferred Updates

SQL Server uses deferred updates when direct update conditions are
not met. Deferred updates are the slowest type of update.

The steps involved in deferred updates are:

• Locate the affected data rows, writing the log records for deferred
delete and insert of the data pages as rows are located.

• Read the log records for the transaction. Perform the deletes on
the data pages and delete any affected index rows.

• At the end of the operation, re-read the log, and make all inserts
on the data pages and insert any affected index rows.

Deferred updates are always required for:

• Updates that use joins

• Updates to columns used for referential integrity

Some other situations that require deferred updates are:

• The update moves the row to a new page while the table is being
accessed via a table scan or clustered index.

• Duplicate rows are not allowed in the table, and there is no
unique index to prevent them.

• The index used to find the data row is not unique, and the row
moves because the update changes the clustered index key or
because the new row does not fit on the page.

Deferred updates incur more overhead than direct updates because
they require re-reading the transaction log to make the final changes
to the data and indexes. This involves additional traversal of the
index trees.

For example, if there is a clustered index on title, this query performs
a deferred update:

update titles set title = "Portable C Software"
where title = "Designing Portable Software"

7-38 The SQL Server Query Optimizer

Update Operations Sybase SQL Server Release 11.0.x

Deferred Index Insert

SQL Server performs deferred index updates when the update
affects the index used in the query or when the update affects
columns in a unique index. In this type of update, SQL Server:

• Deletes the index entries in direct mode

• Updates the data page in direct mode, writing the deferred insert
records for the index

• Reads the log records for the transaction and inserts the new
values in the index in deferred mode

Deferred index insert mode must be used when the update changes
the index used to find the row, or when the update affects a unique
index. Since any query should update a single qualifying row once
and only once, the deferred index update ensures that a row is found
only once during the index scan and that the query does not
prematurely violate a uniqueness constraint.

The update in the example below only changes the last name, but the
index row moves from one page to the next. The steps are:

1. SQL Server reads index page 1133 and deletes the index row for
“Greene” from that page and logs a deferred index scan record.

2. SQL Server changes “Green” to “Hubbard” on the data page in
direct mode. It then continues the index scan to see if more rows
need to be updated.

3. When the scan completes, SQL Server inserts the new index row
for “Hubbard” on page 1127.

Figure 7-10 on page 7-39 shows a table and index before a deferred
update, and the steps showing the changes to the data and index
pages.

SQL Server Performance and Tuning Guide 7-39

Sybase SQL Server Release 11.0.x Update Operations

Figure 7-10: Deferred index update

Page 1421
18 Bennet
19 Green
20 Yokomoto

Page 1007
Bennet 1421,1 1132
Greane 1307,4 1133
Hunter 1307,1 1127 Page 1133

Greane 1307,4
Green 1421,2
Greene 1409,2

Page 1001
Bennet 1421,1 1007
Karsen 1411,3 1009
Smith 1307,2 1062

G
reen

Page 1242
10 O’Leary
11 Ringer
12 White
13 Jenkins

Page 1307
14 Hunter
15 Smith
16 Ringer
17 Greane

Page 1409
21 Dull
22 Greene
23 White

Page 1132
Bennet 1421,1
Chan 1129,3
Dull 1409,1
Edwards 1018,5

Page 1127
Hunter 1307,1
Jenkins 1242,4

Page 1009
Karsen 1411,3 1315

Root page Data pagesIntermediate

Key RowID Pointer

Key Pointer

Leaf pages

Key RowID Pointer

update employee
set lname = "Hubbard"
where lname = "Green"

Step 2: Change data page
Page 1421

18 Bennet
19 Hubbard
20 Yokomoto

Step 1: Delete index row
and write log record

Page 1133
Greane 1307,4
Greene 1409,2

Page 1127
Hubbard 1421,2
Hunter 1307,1
Jenkins 1242,4

Step 3: Read log, insert index row

Before update

Update steps

7-40 The SQL Server Query Optimizer

Update Operations Sybase SQL Server Release 11.0.x

Assume a similar update on the titles table:

update titles
set title = "Computer Phobic’s Manual",
 advance = advance * 2
where title like "Computer Phob%"

This query shows a potential problem. If a scan of the nonclustered
index on the title column found “Computer Phobia Manual,”
changed the title, and multiplied the advance by 2, and then found
the new index row “Computer Phobic’s Manual” and multiplied the
advance by 2, the author might be quite delighted with the results,
but the publishers would not!

Because similar problems arise with updates in joins, where a single
row can match the join criteria more than once, join updates are
always processed in deferred mode.

A deferred index delete may be faster than an expensive direct
update, or it may be substantially slower, depending on the number
of log records that need to be scanned and whether the log pages are
still in cache.

Optimizing Updates

showplan messages provide information about whether an update will
be performed in direct mode or deferred mode. If a direct update is
not possible, SQL Server updates the data row in deferred mode.
There are times when the optimizer cannot know whether a direct
update or a deferred update will be performed, so two showplan
messages are provided:

• The “deferred_varcol” message shows that the update may
change the length of the row because a variable-length column is
being updated. If the updated row fits on the page, the update is
performed in direct mode; if the update does not fit on the page,
the update is performed in deferred mode.

• The “deferred_index” message indicates that the changes to the
data pages and the deletes to the index pages are performed in
direct mode, but the inserts to the index pages are performed in
deferred mode.

The different types of direct updates depend on information that is
available only at run time. For example, the page actually has to be
fetched and examined in order to determine whether the row fits on
the page.

SQL Server Performance and Tuning Guide 7-41

Sybase SQL Server Release 11.0.x Update Operations

When you design and code your applications, be aware of what
differences can cause deferred updates. These guidelines can help
avoid deferred updates:

• Create at least one unique index on the table to encourage more
direct updates.

• Whenever possible, use non-key columns in the where clause
when updating a different key.

• If you do not use null values in your columns, declare them as not
null in your create table statement.

Indexing and Update Types

Table 7-4 shows the effects of index type on update mode for 3
different updates: the update of a key column, a variable-length
column, and a fixed-length column. In all cases, duplicate rows are
not allowed. For the indexed cases, the index is on title_id.

update titles set [title_id | var_len_col |
fixed_len_col] = value

 where title_id = "T1234"

This table shows how a unique index can promote a more efficient
update mode than a nonunique index on the same key. For example,
with a unique clustered index, all of these updates can be performed
in direct mode, but must be performed in deferred mode if the index
is not unique.

For tables with clustered indexes that are not unique, a unique index
on any other column in the table provides improved update
performance. In some cases, you may want to add an identity
column to a table in order to include it as a key in an index that
would otherwise be non-unique.

7-42 The SQL Server Query Optimizer

Update Operations Sybase SQL Server Release 11.0.x

If the key for a table is fixed length, the only difference in update
modes from those shown in the table occurs for nonclustered
indexes. For a nonclustered, non-unique index, the update mode is
deferred_index for updates to the key. For a nonclustered, unique
index, the update mode is direct for updates to the key.

Choosing Fixed-Length Datatypes for Direct Updates

If the actual length of varchar or varbinary is close to the maximum
length, use char or binary instead. Each variable-length column adds
row overhead, and increases the possibility of deferred updates.

Using max_rows_per_page to Increase Direct Updates

Using max_rows_per_page to reduce the number of rows allowed on a
page increases direct updates, because an update which increases the
length of variable-length columns may still fit on the same page. For
more information on using max_rows_per_page, see Chapter 11,
“Decreasing the Number of Rows per Page.”

Table 7-4: Effects of indexing on update mode

Update to:

Indexing Variable-length Key Fixed length column Variable length
column

No index N/A direct deferred_varcol

Clustered, unique direct direct direct

Clustered, not unique deferred deferred deferred

Clustered, not unique,
with a unique index on
another column

deferred direct deferred_varcol

Nonclustered, unique deferred_varcol direct direct

Nonclustered, not
unique

deferred_varcol direct deferred_varcol

SQL Server Performance and Tuning Guide 7-43

Sybase SQL Server Release 11.0.x Update Operations

Using sp_sysmon While Tuning Updates

You can use showplan to figure out if updates are deferred or direct,
but it does not give you more detailed information about the type of
deferred or direct update it is. Output from the system procedure
sp_sysmon (or the separate product, SQL Server Monitor) supplies
detailed statistics about the type of updates performed during a
sample interval.

Run sp_sysmon as you tune updates and look for reduced numbers of
deferred updates, reduced locking, and reduced I/O.

See “Transaction Profile” on page 19-22 in Chapter 19, “Monitoring
SQL Server Performance with sp_sysmon.”

7-44 The SQL Server Query Optimizer

Update Operations Sybase SQL Server Release 11.0.x

SQL Server Performance and Tuning Guide 8-1

8 Understanding Query Plans 8.

Diagnostic Tools for Query Optimization

SQL Server provides these diagnostic tools for query optimization:

• set showplan on displays the steps performed for each query in a
batch. It is often used with set noexec on, especially for queries that
return large numbers of rows. This chapter explains showplan
output.

• set statistics io on displays the number of logical and physical reads
and writes required by the query. This tool is described in
Chapter 6, “Indexing for Performance.”

• set statistics subquerycache on displays the number of cache hits,
misses, and the number of rows in the cache for each subquery.
See “Subquery Results Caching” on page 7-31.

• set statistics time on displays the time it takes to parse and compile
each command and the time it takes to execute each step in the
query.

Combining showplan and noexec

showplan is often used in conjunction with set noexec on, which
prevents the SQL statements from being executed. Be sure to issue
the showplan command, or any other set commands, before the noexec
command. Once you issue set noexec on, the only command that SQL
Server executes is set noexec off.

set showplan on
set noexec on
go
select au_lname, au_fname
 from authors
 where au_id = "A1374065371"
go

If you need to create or drop indexes, remember that set noexec on also
suppresses execution of these commands for the session that issues
them.

showplan, statistics io, and other commands produce their output while
stored procedures are run. You may want to have hard copies of your
table schemas and index information. Or you can use separate

8-2 Understanding Query Plans

Using showplan Sybase SQL Server Release 11.0.x

windows for running system procedures such as sp_helpindex and for
creating and dropping indexes.

Echoing Input into Output Files

For longer queries and batches, you may want to save output into
files. The “echo input” flag to isql echoes the input into the output file,
with line numbers included. The syntax is shown on page 7-6.

Using showplan

The set showplan on command is your main tool for understanding
how the optimizer executes your queries. The following sections
explore query plan output.

In this chapter, the discussion of showplan messages is divided into
four sections:

• Basic showplan messages—those you see when using fairly simple
select statements and data modification commands. See Table 8-1
on page 8-2.

• showplan messages for particular clauses, predicates, and so on,
such group by, aggregates, or order by. See Table 8-2 on page 8-13.

• showplan messages describing access methods. See Table 8-3 on
page 8-23.

• showplan messages for subqueries. See Table 8-4 on page 8-36.

Each message is explained in detail under its own heading. The
message and related messages are shown in bold type in the showplan
output.

Basic showplan Messages

This section describes showplan messages that are printed for most
select, insert, update, and delete operations.

Table 8-1: Basic showplan messages

Message Explanation See

Query Plan for
Statement N (at line
N) .

First variable is the statement number within
a batch, second variable is the line number
within the batch.

page 8-3

SQL Server Performance and Tuning Guide 8-3

Sybase SQL Server Release 11.0.x Basic showplan Messages

Query Plan Delimiter Message

Query Plan for Statement N (at line N)

SQL Server prints this line once for each query in a batch. Its main
function is to provide a visual cue that separates one clump of
showplan output from the next clump. Line numbers are provided to
help you match query output with your input.

Step Message

STEP N

showplan output displays “STEP N” for every query, where N is an
integer, beginning with “STEP 1”. For some queries, SQL Server
cannot effectively retrieve the results in a single step and must break

STEP N Each step for each statement is numbered
sequentially. Numbers are restarted at 1 on
each side of a union.

page 8-3

The type of query is
query type .

query type is replaced by the type of query:
SELECT, UPDATE, INSERT, or any Transact-
SQL statement type.

page 8-4

FROM TABLE Each occurrence of FROM TABLE indicates a
table that will be read. The table name is listed
on the next line. Table 8-3: showplan messages
describing access methods shows the access
method messages for each table access.

page 8-5

TO TABLE Included when a command creates a
worktable and for insert...select commands.

page 8-7

Nested iteration. Indicates the execution of a data retrieval
loop.

page 8-9

The update mode is
direct.

The update mode is
deferred.

The update mode is
deferred_varcol.

The update mode is
deferred_index.

These messages indicate whether an insert,
delete or update is performed in direct update
mode or deferred update mode. See “Update
Mode Messages” on page 8-9.

page 8-9

Table 8-1: Basic showplan messages (continued)

Message Explanation See

8-4 Understanding Query Plans

Basic showplan Messages Sybase SQL Server Release 11.0.x

the query plan into several steps. For example, if a query includes a
group by clause, SQL Server breaks it into at least two steps:

• One step to select the qualifying rows from the table and to group
them, placing the results in a worktable

• Another step to return the rows from the worktable

This example demonstrates a single-step query.

select au_lname, au_fname
from authors
where city = "Oakland"

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

 FROM TABLE
 authors
 Nested iteration.
 Table Scan.
 Ascending scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes.
 With LRU Buffer Replacement Strategy.

Multiple-step queries are demonstrated under the group by command
on page 8-13 and in other places in this chapter.

Query Type Message

The type of query is query type .

This message describes the type of query for each step. For most
queries that require tuning, the value for query type is SELECT,
INSERT, UPDATE, or DELETE. However, the query type can include
any Transact-SQL commands that you issue while showplan is
enabled. For example, here is output from a create index command:

create index ta_idid
 on titleauthor(au_id, title_id)

SQL Server Performance and Tuning Guide 8-5

Sybase SQL Server Release 11.0.x Basic showplan Messages

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is CREATE INDEX.
 TO TABLE
 titleauthor

“FROM TABLE” Message

FROM TABLE
tablename

This message indicates which table the query is reading from. The
“FROM TABLE” message is followed on the next line by the table
name. In some cases, it may indicate that it is selecting from a
worktable.

When your query joins one or more tables, the order of “FROM
TABLE” messages in the output shows you the order in which the
query optimizer joins the tables. This order is often different from the
order in which the tables are listed in the from clause or the where
clause of the query. The query optimizer examines all the different
join orders for the tables involved and picks the join order that
requires the least amount of work. This query displays the join order
in a three-table join:

select authors.au_id, au_fname, au_lname
 from titles, titleauthor, authors
where authors.au_id = titleauthor.au_id
 and titleauthor.title_id = titles.title_id
 and authors.au_lname = "Bloom"

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

 FROM TABLE
 authors
 Nested iteration.
 Index : au_lname_ix
 Ascending scan.
 Positioning by key.
 Keys are:
 au_lname
 Using I/O Size 2 Kbytes.

8-6 Understanding Query Plans

Basic showplan Messages Sybase SQL Server Release 11.0.x

 With LRU Buffer Replacement Strategy.

 FROM TABLE
 titleauthor
 Nested iteration.
 Index : ta_au_tit_ix
 Ascending scan.
 Positioning by key.
 Index contains all needed columns. Base
table will not be read.
 Keys are:
 au_id
 Using I/O Size 2 Kbytes.
 With LRU Buffer Replacement Strategy.

FROM TABLE
 titles
 Nested iteration.
 Using Clustered Index.
 Index : tit_id_ix
 Ascending scan.
 Positioning by key.
 Keys are:
 title_id
 Using I/O Size 2 Kbytes.
 With LRU Buffer Replacement Strategy.

The sequence of tables in this output shows the order chosen by the
SQL Server query optimizer, which is not the order in which they
were listed in the from clause or where clause:

• First, the qualifying rows from the authors table are located (using
the search clause on au_lname).

• Those rows are then joined with the titleauthor table (using the
join clause on the au_id columns).

• Finally, the titles table is joined with the titleauthor table to retrieve
the desired columns (using the join clause on the title_id
columns).

“FROM TABLE” and Referential Integrity

When you insert or update rows in a table that has a referential
integrity constraint, the showplan output includes “FROM TABLE”
and other showplan messages displaying the access methods used to
access the referenced table.

SQL Server Performance and Tuning Guide 8-7

Sybase SQL Server Release 11.0.x Basic showplan Messages

This salesdetail table definition includes a referential integrity check
on the title_id:

create table salesdetail (
 stor_id char(4),
 ord_num varchar(20),
 title_id tid
 references titles(title_id),
 qty smallint,
 discount float)

An insert to salesdetail, or an update on the title_id column, requires a
lookup in the titles table:

insert salesdetail values ("S245", "X23A5", "T10",
15, 40.25)

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.

FROM TABLE
 titles
 Using Clustered Index.

Index : tit_id_ix
 Ascending scan.
 Positioning by key.

Keys are:
 title_id
 Using I/O Size 2 Kbytes.
 With LRU Buffer Replacement Strategy.
 TO TABLE
 salesdetail

The clustered index on title_id provided the best access method for
looking up the referenced value.

“TO TABLE” Message

TO TABLE
tablename

When a command such as insert, delete, update, or select into modifies or
attempts to modify one or more rows of a table, the “TO TABLE”
message displays the name of the target table. For operations that
require an intermediate step to insert rows into a worktable

8-8 Understanding Query Plans

Basic showplan Messages Sybase SQL Server Release 11.0.x

(discussed later), “TO TABLE” indicates that the results are going to
the “Worktable” table rather than a user table. The following
examples illustrate the use of the “TO TABLE” statement:

insert sales
values ("8042", "QA973", "12/7/95")

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.

 TO TABLE
 sales

update publishers
set city = "Los Angeles"
where pub_id = "1389"

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is UPDATE.
 The update mode is direct.

FROM TABLE
 publishers
 Nested iteration.
 Index : pub_id_ix
 Ascending scan.
 Positioning by key.
 Keys are:
 pub_id
 Using I/O Size 2 Kbytes.
 With LRU Buffer Replacement Strategy.

TO TABLE
 publishers

The second query indicates that the publishers table is used as both
the “FROM TABLE” and the “TO TABLE”. In the case of update
operations, the optimizer needs to read the table that contains the
row(s) to be updated, resulting in the “FROM TABLE” statement,
and then needs to modify the row(s), resulting in the “TO TABLE”
statement.

SQL Server Performance and Tuning Guide 8-9

Sybase SQL Server Release 11.0.x Basic showplan Messages

Nested Iteration Message

Nested Iteration.

This message indicates one or more loops through a table to return
rows. Even the simplest access to a single table is an iteration.

“Nested iteration” is the default technique used to join tables and/or
return rows from a single table. For each iteration, the optimizer is
using one or more sets of loops to:

1. Go through a table and retrieve a row

2. Qualify the row based on the search criteria given in the where
clause

3. Return the row to the front end

4. Loop again to get the next row, until all rows have been
retrieved, based on the scope of the search

The method in which the query accesses the rows (such as using an
available index) is discussed in “showplan Messages Describing
Access Methods and Caching” on page 8-23.

The only exception to “Nested iteration” is the “EXISTS TABLE:
nested iteration,” explained on page 8-49.

Update Mode Messages

SQL Server uses different modes to perform update operations such
as insert, delete, update, and select into. These methods are called direct
update mode and deferred update mode.

Direct Update Mode

The update mode is direct.

Whenever possible, SQL Server uses direct update mode, since it is
faster and generates fewer log records than deferred update mode.

The direct update mode operates as follows:

1. Pages are read into the data cache.

2. The changes are recorded in the transaction log.

3. The change is made to the data page.

4. The transaction log page is flushed to disk when the transaction
commits.

8-10 Understanding Query Plans

Basic showplan Messages Sybase SQL Server Release 11.0.x

SQL Server uses direct update mode in the following circumstances:

• For all insert commands, unless the table into which the rows are
being inserted is being read from in the same command (for
example, an insert...select to a table, from the same table).

• When you create a table and populate it with a select into
command, SQL Server uses direct update mode to insert the new
rows.

• Delete operations are performed in direct update mode unless
the delete statement includes a join or columns used for referential
integrity.

• SQL Server processes update commands in direct update mode or
deferred update mode, depending on information that is
available only at run time. For more information on the different
types of direct updates, see the discussion of direct and deferred
updates under “Update Operations” on page 7-32.

For example, SQL Server uses direct update mode for the following
delete command:

delete
from authors
where au_lname = "Willis"
and au_fname = "Max"

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is DELETE.

The update mode is direct.

 FROM TABLE
 authors
 Nested iteration.
 Index : au_names
 Ascending scan.
 Positioning by key.
 Keys are:
 au_lname
 au_fname
 Using I/O Size 2 Kbytes.
 With LRU Buffer Replacement Strategy.
 TO TABLE
 authors

SQL Server Performance and Tuning Guide 8-11

Sybase SQL Server Release 11.0.x Basic showplan Messages

Deferred Mode

The update mode is deferred.

In deferred mode, processing takes place in these steps:

1. For each qualifying data row, SQL Server writes transaction log
records for one deferred delete and one deferred insert.

2. SQL Server scans the transaction log to process the deferred
inserts, changing the data pages and any affected index pages.

Deferred mode is used:

• For insert...select operations from a table into the same table

• For certain updates (see the discussion of direct and deferred
updates under “Update Operations” on page 7-32)

• For delete statements that include a join or columns used for
referential integrity

Consider the following insert...select operation, where mytable is a
heap without a clustered index or unique nonclustered index:

insert mytable
 select title, price * 2
 from mytable

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.

 The update mode is deferred.

 FROM TABLE
 mytable
 Nested iteration.
 Table Scan.
 Ascending scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes.
 With LRU Buffer Replacement Strategy.
 TO TABLE
 mytable

This command copies every row in the table and appends the rows
to the end of the table. The query processor needs to differentiate
between the rows that are currently in the table (prior to the insert
command) and the rows being inserted, so that it does not get into a
continuous loop of selecting a row, inserting it at the end of the table,

8-12 Understanding Query Plans

Basic showplan Messages Sybase SQL Server Release 11.0.x

selecting the row that it just inserted, and re-inserting it again. The
query processor solves this problem by performing the operation in
two steps:

1. It scans the existing table and writes insert records into the
transaction log for each row that it finds.

2. When all the “old” rows have been read, it scans the log and
performs the insert operations.

“Deferred Index” and “Deferred Varcol” Messages

The update mode is deferred_varcol.

The update mode is deferred_index.

These showplan messages indicate that SQL Server may process an
update command as a deferred index update.

SQL Server uses deferred_varcol mode when updating one or more
variable-length columns. This update may be done in deferred or
direct mode, depending on information that is available only at run
time.

SQL Server uses deferred_index mode when the index used to find
to row is unique or may change as part of the update. In this mode,
SQL Server deletes the index entries in direct mode but inserts them
in deferred mode.

From more information about how deferred index updates work,
refer to “Deferred Index Insert” on page 7-38.

Using sp_sysmon While Tuning Updates

showplan tells you if an update is deferred_varcol, deferred_index, or
direct. If you need more information about the type of deferred
update, use sp_sysmon (or the separate product, SQL Server Monitor).

Run sp_sysmon as you tune updates and look for reduced numbers of
deferred updates, reduced locking, and reduced I/O.

See “Transaction Profile” on page 19-22 in Chapter 19, “Monitoring
SQL Server Performance with sp_sysmon.”

SQL Server Performance and Tuning Guide 8-13

Sybase SQL Server Release 11.0.x showplan Messages for Query Clauses

showplan Messages for Query Clauses

Use of certain Transact-SQL clauses, functions, and keywords is
reflected in showplan output. These include group by, aggregates,
distinct, order by, and select into clauses.

“GROUP BY” Message

GROUP BY

Table 8-2: Showplan messages for various clauses

Message Explanation See

GROUP BY The query contains a group by
statement.

page 8-13

The type of query is SELECT
(into Worktable N)

The step creates a worktable to hold
intermediate results.

page 8-14

Evaluate Grouped type AGGREGATE

or

Evaluate Ungrouped type
AGGREGATE

The query contains an aggregate.
“Grouped” indicates that there is a
grouping column for the aggregate
(vector aggregate); “Ungrouped”
indicates there is no grouping
column. The variable indicates the
type of aggregate.

page 8-15

page 8-17

Evaluate Grouped ASSIGNMENT
OPERATOR

Evaluate Ungrouped ASSIGNMENT
OPERATOR

Query includes compute (ungrouped)
or compute by (grouped).

page 8-16

Worktable N created for
DISTINCT.

The query contains a distinct keyword
in the select list that requires a sort to
eliminate duplicates.

page 8-20

Worktable N created for ORDER
BY.

The query contains an order by clause
that requires ordering rows.

page 8-21

This step involves sorting. The query includes on order by or
distinct clause, and results must be
sorted.

page 8-22

Using GETSORTED. The query created a worktable and
sorted it. GETSORTED is a particular
technique used to return the rows.

page 8-23

8-14 Understanding Query Plans

showplan Messages for Query Clauses Sybase SQL Server Release 11.0.x

This statement appears in the showplan output for any query that
contains a group by clause. Queries that contain a group by clause are
always executed in at least two steps:

• One step selects the qualifying rows into a worktable and groups
them.

• Another step returns the rows from the worktable.

Selecting into a Worktable

The type of query is SELECT (into Worktable N).

Queries using a group by clause first put qualifying results into a
worktable. The data is grouped as the table is generated. A second
step returns the grouped rows.

The following example returns a list of all cities and indicates the
number of authors that live in each city. The query plan shows the
two steps: the first step selects the rows into a worktable, and the
second step retrieves the grouped rows from the worktable:

select city, total_authors = count(*)
 from authors
 group by city

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT (into
Worktable1).

GROUP BY
 Evaluate Grouped COUNT AGGREGATE.

 FROM TABLE
 authors
 Nested iteration.
 Table Scan.
 Ascending scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes.
 With LRU Buffer Replacement Strategy.
 TO TABLE
 Worktable1.

 STEP 2

SQL Server Performance and Tuning Guide 8-15

Sybase SQL Server Release 11.0.x showplan Messages for Query Clauses

 The type of query is SELECT.

 FROM TABLE
 Worktable1.
 Nested iteration.
 Table Scan.
 Ascending scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes.
 With MRU Buffer Replacement Strategy.

Grouped Aggregate Message

Evaluate Grouped type AGGREGATE

This message is printed by queries that contain aggregates and group
by or compute by.

The variable indicates the type of aggregate—COUNT, SUM OR
AVERAGE, MINIMUM, or MAXIMUM.

avg reports both COUNT and SUM OR AVERAGE; sum reports SUM
OR AVERAGE. Two additional types of aggregates (ONCE and
ANY) are used internally by SQL Server while processing
subqueries. These are discussed on page 8-45.

Grouped Aggregates and group by

When an aggregate function is combined with group by, the result is
called a grouped aggregate or vector aggregate. The query results
have one row for each value of the grouping column or columns.

The following example illustrates a grouped aggregate:

select type, avg(advance)
from titles
group by type

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT (into Worktable1).
 GROUP BY

Evaluate Grouped COUNT AGGREGATE.
 Evaluate Grouped SUM OR AVERAGE AGGREGATE.

 FROM TABLE
 titles

8-16 Understanding Query Plans

showplan Messages for Query Clauses Sybase SQL Server Release 11.0.x

 Nested iteration.
 Table Scan.
 Ascending scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes.
 With LRU Buffer Replacement Strategy.
 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.

 FROM TABLE
 Worktable1.
 Nested iteration.
 Table Scan.
 Ascending scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes.
 With MRU Buffer Replacement Strategy.

In the first step, the worktable is created and the aggregates are
computed. The second step selects the results from the worktable.

compute by Message

Evaluate Grouped ASSIGNMENT OPERATOR

Queries using compute by display the same aggregate messages as
group by as well as the “Evaluate Grouped ASSIGNMENT
OPERATOR” message. The values are placed in a worktable in one
step, and the computation of the aggregates is performed in a second
step. This query uses type and advance, like the group by query
example:

select type, advance from titles
having title like "Compu%"
order by type
compute avg(advance) by type

In the showplan output, the computation of the aggregates takes place
in Step 2:

SQL Server Performance and Tuning Guide 8-17

Sybase SQL Server Release 11.0.x showplan Messages for Query Clauses

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Worktable1 created for ORDER BY.

 FROM TABLE
 titles
 Nested iteration.
 Index : title_ix
 Ascending scan.
 Positioning by key.
 Keys are:
 title
 Using I/O Size 2 Kbytes.
 With LRU Buffer Replacement Strategy.
 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.
 Evaluate Grouped SUM OR AVERAGE AGGREGATE.
 Evaluate Grouped COUNT AGGREGATE.

 Evaluate Grouped ASSIGNMENT OPERATOR.
 This step involves sorting.

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Ascending scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes.
 With MRU Buffer Replacement Strategy.

Ungrouped Aggregate Message

Evaluate Ungrouped type AGGREGATE.

This message is reported by:

• Queries that use aggregate functions, but do not use group by

• Queries that use compute

See “Grouped Aggregate Message” on page 8-15 for an explanation
of type.

8-18 Understanding Query Plans

showplan Messages for Query Clauses Sybase SQL Server Release 11.0.x

Ungrouped Aggregates

When an aggregate function is used in a select statement that does not
include a group by clause, it produces a single value. The query can
operate on all rows in a table or on a subset of the rows defined by a
where clause. When an aggregate function produces a single value,
the function is called a scalar aggregate or ungrouped aggregate.
Here is showplan output for an ungrouped aggregate:

select avg(advance)
from titles
where type = "business"

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

Evaluate Ungrouped COUNT AGGREGATE.
 Evaluate Ungrouped SUM OR AVERAGE AGGREGATE.

 FROM TABLE
 titles
 Nested iteration.
 Index : tp
 Ascending scan.
 Positioning by key.
 Keys are:
 type
 Using I/O Size 2 Kbytes.
 With LRU Buffer Replacement Strategy.

 STEP 2
 The type of query is SELECT.

Notice that showplan considers this a two-step query, which is similar
to the showplan from the group by query shown earlier. Since the scalar
aggregate returns a single value, SQL Server uses an internal variable
to compute the result of the aggregate function as the qualifying
rows from the table are evaluated. After all rows from the table have
been evaluated (Step 1), the final value from the variable is selected
(Step 2) to return the scalar aggregate result.

compute Messages

Evaluate Ungrouped ASSIGNMENT OPERATOR

SQL Server Performance and Tuning Guide 8-19

Sybase SQL Server Release 11.0.x showplan Messages for Query Clauses

When a query includes compute to compile a scalar aggregate, showplan
prints the “Evaluate Ungrouped ASSIGNMENT OPERATOR”
message. This query computes an average for the entire result set:

select type, advance from titles
having title like "Compu%"
order by type
compute avg(advance)

The showplan output shows that the computation of the aggregate
values takes place in the second step:

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Worktable1 created for ORDER BY.

 FROM TABLE
 titles
 Nested iteration.
 Index : titles_ix
 Ascending scan.
 Positioning by key.
 Keys are:
 title
 Using I/O Size 2 Kbytes.
 With LRU Buffer Replacement Strategy.
 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.
 Evaluate Ungrouped SUM OR AVERAGE AGGREGATE.
 Evaluate Ungrouped COUNT AGGREGATE.

 Evaluate Ungrouped ASSIGNMENT OPERATOR.
 This step involves sorting.

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Ascending scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes.
 With MRU Buffer Replacement Strategy.

8-20 Understanding Query Plans

showplan Messages for Query Clauses Sybase SQL Server Release 11.0.x

Messages for order by and distinct

Some queries that include distinct use a sort step to locate the
duplicate values in the result set. distinct queries and order by queries
can avoid the sorting step when the indexes used to locate rows
support the order by or distinct clause.

For those cases where the sort must be performed, the distinct
keyword in a select list and the order by clause share some showplan
messages:

• Each generates a worktable message

• The message “This step involves sorting.”

• The message “Using GETSORTED”

Worktable Message for distinct

WorktableN created for DISTINCT.

A query that includes the distinct keyword excludes all duplicate rows
from the results so that only unique rows are returned. When there is
no useful index, SQL Server performs these steps to process queries
that include distinct:

1. It creates a worktable to store all of the results of the query,
including duplicates.

2. It sorts the rows in the worktable, discarding the duplicate rows.
Finally, the rows from the worktable are returned.

The “WorktableN created for DISTINCT” message appears as part of
“Step 1” in showplan output. “Step 2” for distinct queries includes the
messages “This step involves sorting” and “Using GETSORTED,”
which are explained on page 8-22.

select distinct city
from authors

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.

 Worktable1 created for DISTINCT.

 FROM TABLE
 authors
 Nested iteration.

SQL Server Performance and Tuning Guide 8-21

Sybase SQL Server Release 11.0.x showplan Messages for Query Clauses

 Table Scan.
 Ascending scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes.
 With LRU Buffer Replacement Strategy.
 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.

This step involves sorting.

 FROM TABLE
 Worktable1.

Using GETSORTED
 Table Scan.
 Ascending scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes.
 With MRU Buffer Replacement Strategy.

Worktable Message for order by

Worktable N created for ORDER BY.

Queries that include an order by clause often require the use of a
temporary worktable. When the optimizer cannot use an index to
order the result rows, it creates a worktable to sort the result rows
before returning them. This example shows an order by clause that
creates a worktable because there is no index on the city column:

select *
from authors
order by city

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.

Worktable1 created for ORDER BY.

 FROM TABLE
 authors
 Nested iteration.
 Table Scan.
 Ascending scan.
 Positioning at start of table.

8-22 Understanding Query Plans

showplan Messages for Query Clauses Sybase SQL Server Release 11.0.x

 Using I/O Size 2 Kbytes.
 With LRU Buffer Replacement Strategy.
 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.

This step involves sorting.

 FROM TABLE
 Worktable1.

 Using GETSORTED
 Table Scan.
 Ascending scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes.
 With MRU Buffer Replacement Strategy.

The messages “This step involves sorting” and “Using
GETSORTED” are explained on page 8-22.

order by Queries and Indexes

Certain queries using order by do not require a sorting step. Factors
include:

• Whether the output is in ascending or descending order.
Descending sorts always require sorts.

• The type of index used to access the data.

See “Indexes and Sorts” on page 6-21 for more information.

Sorting Message

This step involves sorting.

This showplan message indicates that the query must sort the
intermediate results before returning them to the user. Queries that
use distinct or that have an order by clause not supported by an index
require an intermediate sort. The results are put into a worktable,
and the worktable is then sorted. For examples of this message, see
“Worktable Message for distinct” on page 8-20 or “Worktable
Message for order by” on page 8-21.

SQL Server Performance and Tuning Guide 8-23

Sybase SQL Server Release 11.0.x showplan Messages Describing Access Methods and Caching

“GETSORTED” Message

Using GETSORTED

This statement indicates one of the ways that SQL Server returns
result rows from a table. In the case of “Using GETSORTED,” the
rows are returned in sorted order. However, not all queries that
return rows in sorted order include this step. For example, order by
queries whose rows are retrieved using an index with a matching
sort sequence do not require “GETSORTED.”

The “Using GETSORTED” method is used when SQL Server must
first create a temporary worktable to sort the result rows and then
return them in the proper sorted order. The examples for distinct on
page 8-20 and for order by on page 8-21 show the “Using
GETSORTED” message.

showplan Messages Describing Access Methods and Caching

showplan output provides information about access methods and
caching strategies.

Table 8-3: showplan messages describing access methods

Message Explanation

Table Scan. Indicates that the query performs a
table scan.

page 8-24

Using N Matching Index Scans Indicates that a query with in or or is
performing multiple index scans,
one for each or condition or in list
item.

page 8-25

Using Clustered Index. Query uses the clustered index on
the table.

page 8-26

Index : index_name Query uses an index on the table; the
variable shows the index name.

page 8-27

Ascending scan. Indicates the direction of the scan.
All scans are ascending.

page 8-28

Positioning at start of
table.
Positioning by Row
IDentifier (RID).
Positioning by key.
Positioning at index start.

These messages indicate how scans
are taking place.

page 8-28

8-24 Understanding Query Plans

showplan Messages Describing Access Methods and Caching Sybase SQL Server Release 11.0.x

Table Scan Message

Table Scan.

This message indicates that the query performs a table scan.

When a table scan is performed, the execution begins with the first
row in the table. Each row is retrieved, compared to the conditions in
the where clause, and returned to the user if it meets the query criteria.
Every row in the table must be looked at, so for very large tables, a
table scan can be very costly in terms of disk I/O. If a table has one or
more indexes on it, the query optimizer may still choose to do a table
scan instead of using one of the available indexes, if the indexes are
too costly or are not useful for the given query. The following query
shows a typical table scan:

Scanning only up to the first
qualifying row.

Scanning only the last page
of the table.

These messages indicate min and max
optimization, respectively.

page 8-29

Index contains all needed
columns. Base table will not
be read.

Indicates that the nonclustered index
covers the query.

page 8-29

Keys are: Included when the positioning
message indicates “Positioning by
key.” The next line(s) show the index
key(s) used.

page 8-31

Using Dynamic Index. Reported during some queries using
or clauses or in (values list).

page 8-31

WorktableN created for
REFORMATTING.

Indicates that an inner table of a join
has no useful indexes, and that SQL
Server has determined that it is
cheaper to build a worktable and an
index on the worktable than to
perform repeated table scans.

page 8-33

Log Scan. Query fired a trigger that uses
inserted or deleted tables.

page 8-35

Using I/O size N Kbytes. Variable indicates the I/O size for
disk reads and writes.

page 8-35

With LRU/MRU buffer
replacement strategy.

Reports the caching strategy for the
table.

page 8-36

Table 8-3: showplan messages describing access methods (continued)

Message Explanation

SQL Server Performance and Tuning Guide 8-25

Sybase SQL Server Release 11.0.x showplan Messages Describing Access Methods and Caching

select au_lname, au_fname
from authors

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

 FROM TABLE
 authors
 Nested iteration.

 Table Scan.
 Ascending scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes.
 With LRU Buffer Replacement Strategy.

Matching Index Scans Message

Using N Matching Index Scans.

This showplan message indicates that a query using or clauses or an in
list is using multiple index accesses to return the rows directly
without using a dynamic index. See “Dynamic Index Message” on
page 8-31 for information on this strategy.

Multiple matching scans can only be used when there is no
possibility that the or clauses or in list items can match duplicate
rows—that is, when there is no need to build the worktable and
perform the sort to remove the duplicates. This query can use the
multiple matching scans strategy, because the two scans will never
return the duplicate rows:

select * from titles
where type = "business" or type = "art"

This query must create a dynamic index in order to avoid returning
duplicate rows:

select * from titles
where type = "business" or price = $19.95

In some cases, different indexes may be used for some of the scans, so
the messages that describe the type of index, index positioning, and
keys used are printed for each scan.

The following example uses multiple scans to return rows:

8-26 Understanding Query Plans

showplan Messages Describing Access Methods and Caching Sybase SQL Server Release 11.0.x

select title
from titles
where title_id in ("T18168","T55370")

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

 FROM TABLE
 titles
 Nested iteration.
 Using 2 Matching Index Scans
 Index : title_id_ix
 Ascending scan.
 Positioning by key.
 Keys are:
 title_id
 Index : title_id_ix
 Ascending scan.
 Positioning by key.
 Keys are:
 title_id
 Using I/O Size 2 Kbytes.
 With LRU Buffer Replacement Strategy.

Clustered Index Message

Using Clustered Index.

This showplan message indicates that the query optimizer chose to use
the clustered index on a table to retrieve the rows. The following
query shows the clustered index being used to retrieve the rows from
the table:

select title_id, title
from titles
where title_id like "T9%"

SQL Server Performance and Tuning Guide 8-27

Sybase SQL Server Release 11.0.x showplan Messages Describing Access Methods and Caching

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

 FROM TABLE
 titles
 Nested iteration.

 Using Clustered Index.
 Index : tit_id_ix
 Ascending scan.
 Positioning by key.
 Keys are:
 title_id
 Using I/O Size 2 Kbytes.
 With LRU Buffer Replacement Strategy.

Index Name Message

Index : indexname

This message indicates that the optimizer is using an index to
retrieve the rows. The message includes the index name. If the line
above this one in the output says “Using Clustered Index,” the index
type is clustered; otherwise, the index is nonclustered.

The keys used to position the search are reported in the “Keys are...”
message described on page 8-31.

This query illustrates the use of a nonclustered index to find and
return rows:

select au_id, au_fname, au_lname
from authors
where au_fname = "Susan"

8-28 Understanding Query Plans

showplan Messages Describing Access Methods and Caching Sybase SQL Server Release 11.0.x

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

 FROM TABLE
 authors
 Nested iteration.

 Index : au_name_ix
 Ascending scan.
 Positioning by key.
 Keys are:
 au_fname
 Using I/O Size 2 Kbytes.
 With LRU Buffer Replacement Strategy.

Scan Direction Message

Ascending scan.

This message indicates that the scan direction is ascending. All
descending sorts require a worktable and a sort. SQL Server does not
currently scan tables or indexes in descending order.

Positioning Messages

Positioning at start of table.

Positioning by Row IDentifier (RID).

Positioning by key.

Positioning at index start.

These messages describe how access to a table or to the leaf level of a
nonclustered index takes place. The choices are:

• “Positioning at start of table.” This message indicates a table scan,
starting at the first row of the table.

• “Positioning by Row IDentifier (RID).” This message is printed
after the OR strategy has created a dynamic index of row IDs. See
“Using Dynamic Index.” on page 8-31 for more information
about how row IDs are used.

• “Positioning by key.” This messages indicates that the index is
used to find the qualifying row or the first qualifying row. It is
printed for:

SQL Server Performance and Tuning Guide 8-29

Sybase SQL Server Release 11.0.x showplan Messages Describing Access Methods and Caching

- Direct access to individual rows in point queries

- Range queries that perform matching scans of the leaf level of
a nonclustered index

- Range queries that scan the data pages when there is a
clustered index

- Indexed accesses to inner tables in joins

• “Positioning at index start.” This message indicates a
nonmatching nonclustered index scan, used when the index
covers the query. Matching scans are positioned by key.

Scanning Messages

Scanning only the last page of the table.

This message indicates that a query containing an ungrouped
(scalar) max aggregate needs to access only the last page of the table.
In order to use this special optimization, the aggregate column needs
to be the leading column in an index. See “Optimizing Aggregates”
on page 7-25 for more information.

Scanning only up to the first qualifying row.

This message appears only for queries using an ungrouped (scalar)
min aggregate. The aggregated column needs to be the leading
column in an index. See “Optimizing Aggregates” on page 7-25 for
more information.

Index Covering Message

Index contains all needed columns. Base table will
not be read.

This message indicates that the nonclustered index covers the query.
It is printed both for matching index accesses, and for non-matching
scans. The difference in showplan output for the two types of queries
can be seen from two other parts of the showplan output for the query:

• A matching scan reports “Positioning by key.” A nonmatching
scan reports “Positioning at index start,” since a nonmatching
scan must read the entire leaf level of the nonclustered index.

• If the optimizer uses a matching scan, the “Keys are...” line
reports the keys used to position the search. This information is
not included for a nonmatching scan, since the keys are not used
for positioning, but only for selecting the rows to return.

8-30 Understanding Query Plans

showplan Messages Describing Access Methods and Caching Sybase SQL Server Release 11.0.x

The next query shows output for a matching scan, using a composite
index on au_lname, au_fname, au_id:

select au_fname, au_lname, au_id
from authors
where au_lname = "Williams"

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

 FROM TABLE
 authors
 Nested iteration.
 Index : au_names_id
 Ascending scan.

 Positioning by key.
 Index contains all needed columns. Base

table will not be read.
 Keys are:
 au_lname
 Using I/O Size 2 Kbytes.
 With LRU Buffer Replacement Strategy.

The index is used to find the first occurrence of “Williams” on the
nonclustered leaf page. The query scans forward, looking for more
occurrences of “Williams” and returning any it finds. Once a value
greater than “Williams” is found, the query has found all the
matching values, and the query stops. All the values needed in the
where clauses and select list are included in this index, so no access to
the table is required.

With the same composite index on au_lname, au_fname, au_id, this
query performs a nonmatching scan, since the leading column of the
index is not included in the where clause:

select au_fname, au_lname, au_id
from authors
where au_id = "A93278"

Note that the showplan output does not contains a “Keys are...”
message, and the positioning message is “Positioning at index start.”

SQL Server Performance and Tuning Guide 8-31

Sybase SQL Server Release 11.0.x showplan Messages Describing Access Methods and Caching

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

 FROM TABLE
 authors
 Nested iteration.
 Index : au_names_id
 Ascending scan.

 Positioning at index start.
 Index contains all needed columns. Base
table will not be read.
 Using I/O Size 2 Kbytes.
 With LRU Buffer Replacement Strategy.

This query must scan the entire leaf level of the nonclustered index,
since the rows are not ordered and there is no way to know the
uniqueness of a particular column in a composite index.

Keys Message

Keys are:
 keys_list

This message is followed by the key(s) used whenever SQL Server
uses a clustered or a matching nonclustered index scan to locate
rows. For composite indexes, all keys in the where clauses are listed.
Examples are included under those messages.

Dynamic Index Message

Using Dynamic Index.

The term “dynamic index” refers to a special table of row IDs that
SQL Server creates to process queries that use or clauses. When a
query contains or clauses or an in (values list) clause, SQL Server can do
one of the following:

• Scan the table once, finding all rows that match each of the
conditions. You will see a “Table Scan” message, but a dynamic
index will not be used.

• Use one or more indexes and access the table once for each or
clause or item in the in list. You will see a “Positioning by key”
message and the “Using Dynamic Index” message. This

8-32 Understanding Query Plans

showplan Messages Describing Access Methods and Caching Sybase SQL Server Release 11.0.x

technique is called the OR strategy. For a full explanation, see
“Optimization of or clauses and in (values_list)” on page 7-22.

When the OR strategy is used, SQL Server builds a list of all of
the row IDs that match the query, sorts the list to remove
duplicates, and uses the list to retrieve the rows from the table.

Conditions for Using a Dynamic Index

SQL Server does not use the OR strategy for all queries that contain
or clauses. The following conditions must be met:

• All columns in the or clause must belong to the same table.

• If any portion of the or clause requires a table scan (due to lack of
an appropriate index or poor selectivity of a given index), then a
table scan is used for the entire query.

If the query contains or clauses on different columns of the same
table, and each of those columns has a useful index, SQL Server can
use different indexes for each clause.

The OR strategy cannot be used for cursors.

The showplan output below includes three “FROM TABLE” sections:

• The first two “FROM TABLE” blocks in the output show the two
index accesses, one for “Bill” and one for “William”.

• The final “FROM TABLE” block shows the “Using Dynamic
Index” output with its companion positioning message,
“Positioning by Row IDentifier (RID).” This is the step where the
dynamic index is used to locate the table rows to be returned.

select au_id, au_fname, au_lname
from authors
where au_fname = "Bill"
 or au_fname = "William"

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

 FROM TABLE
 authors
 Nested iteration.
 Index : au_fname_ix
 Ascending scan.
 Positioning by key.

SQL Server Performance and Tuning Guide 8-33

Sybase SQL Server Release 11.0.x showplan Messages Describing Access Methods and Caching

 Keys are:
 au_fname
 Using I/O Size 2 Kbytes.
 With LRU Buffer Replacement Strategy.

 FROM TABLE
 authors
 Nested iteration.
 Index : au_fname_ix
 Ascending scan.
 Positioning by key.
 Keys are:
 au_fname
 Using I/O Size 2 Kbytes.
 With LRU Buffer Replacement Strategy.

 FROM TABLE
 authors
 Nested iteration.

 Using Dynamic Index.
 Ascending scan.

 Positioning by Row IDentifier (RID).
 Using I/O Size 2 Kbytes.
 With LRU Buffer Replacement Strategy.

Reformatting Message

WorktableN Created for REFORMATTING.

When joining two or more tables, SQL Server may choose to use a
reformatting strategy to join the tables when the tables are large and
the tables in the join do not have a useful index. The reformatting
strategy:

• Inserts the needed columns from qualifying rows of the smaller
of the two tables into a worktable.

• Creates a clustered index on the join column(s) of the worktable.
The index is built using the keys that join the worktable to the
outer table in the query.

• Uses the clustered index in the join to retrieve the qualifying rows
from the table.

See “Saving I/O Using the Reformatting Strategy” on page 7-17 for
more information on reformatting.

8-34 Understanding Query Plans

showplan Messages Describing Access Methods and Caching Sybase SQL Server Release 11.0.x

➤ Note
If your queries frequently employ the reformatting strategy, examine the

tables involved in the query. Unless there are other overriding factors, you

may want to create an index on the join columns of the table.

The following example illustrates the reformatting strategy. It
performs a three-way join on the titles, titleauthor, and titles tables.
There are no indexes on the join columns in the tables (au_id and
title_id), which forces SQL Server to use the reformatting strategy on
two of the tables:

select au_lname, title
from authors a, titleauthor ta, titles t
where a.au_id = ta.au_id
and t.title_id = ta.title_id

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.

 Worktable1 created for REFORMATTING.
 FROM TABLE
 titleauthor
 Nested iteration.
 Table Scan.
 Ascending scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes.
 With LRU Buffer Replacement Strategy.
 TO TABLE
 Worktable1.

 STEP 2
 The type of query is INSERT.
 The update mode is direct.

 Worktable2 created for REFORMATTING.

 FROM TABLE
 authors
 Nested iteration.
 Table Scan.
 Ascending scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes.
 With LRU Buffer Replacement Strategy.

SQL Server Performance and Tuning Guide 8-35

Sybase SQL Server Release 11.0.x showplan Messages Describing Access Methods and Caching

 TO TABLE
 Worktable2.

 STEP 3
 The type of query is SELECT.

 FROM TABLE
 titles
 Nested iteration.
 Table Scan.
 Ascending scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes.
 With LRU Buffer Replacement Strategy.

 FROM TABLE
 Worktable1.
 Nested iteration.
 Using Clustered Index.
 Ascending scan.
 Positioning by key.
 Using I/O Size 2 Kbytes.
 With LRU Buffer Replacement Strategy.

 FROM TABLE
 Worktable2.
 Nested iteration.
 Using Clustered Index.
 Ascending scan.
 Positioning by key.
 Using I/O Size 2 Kbytes.
 With LRU Buffer Replacement Strategy.

Trigger “Log Scan” Message

Log Scan.

When an insert, update, or delete statement causes a trigger to fire, and
the trigger includes access to the inserted or deleted tables, these tables
are built by scanning the transaction log.

I/O Size Message

Using I/O size N Kbtyes.

This message reports the I/O size used in the query. For tables and
indexes, the possible sizes are 2K, 4K, 8K, and 16K. If the table, index,

8-36 Understanding Query Plans

showplan Messages for Subqueries Sybase SQL Server Release 11.0.x

or database used in the query uses a data cache with large I/O sized
pools, the SQL Server optimizer can choose to use large I/O for some
types of queries.

See Chapter 15, “Memory Use and Performance,” for more
information on large I/Os and the data cache.

Cache Strategy Message

With <LRU/MRU> Buffer Replacement Strategy.

Indicates the caching strategy used by the query. See “Overview of
Cache Strategies” on page 3-15 for more information on caching
strategies.

showplan Messages for Subqueries

Since subqueries can contain the same clauses that regular queries
contain, their showplan output can include many of the messages
listed in earlier sections.

The showplan messages for subqueries, listed in Table 8-4, include
special delimiters that allow you to easily spot the beginning and end
of a subquery processing block, messages to identify the type of
subquery, the place in the outer query where the subquery is
executed, or special types of processing performed only in
subqueries.

Table 8-4: showplan messages for subqueries

Message Explanation See

Run subquery N (at nesting level
N).

This message appears at the point
in the query where the subquery
actually runs. Subqueries are
numbered in order for each side of
a union.

page 8-43

NESTING LEVEL N SUBQUERIES FOR
STATEMENTN.

Shows the nesting level of the
subquery.

page 8-43

QUERY PLAN FOR SUBQUERYN (at
line N).

END OF QUERY PLAN FOR SUBQUERY
N.

These lines bracket showplan
output for each subquery in a
statement. Variables show the
subquery number, the nesting level,
and the input line.

page 8-43

page 8-43

Correlated Subquery. The subquery is correlated. page 8-43

SQL Server Performance and Tuning Guide 8-37

Sybase SQL Server Release 11.0.x showplan Messages for Subqueries

“Optimizing Subqueries” on page 7-26 explains how SQL Server
optimizes certain types of subqueries by materializing results or
flattening the queries to joins. Chapter 5 of the Transact-SQL User’s
Guide provides basic information on subqueries, subquery types,
and the meaning of the subquery predicates.

Output for Flattened or Materialized Subqueries

Certain forms of subqueries can be processed more efficiently when:

• The query is flattened into a join query.

• The subquery result set is materialized as a first step, and the
results are used in a second step with the rest of the outer query.

When the optimizer chooses one of these strategies, the query is not
processed as a subquery, so you will not see the special subquery
message delimiters. The following sections describe showplan output
for flattened and materialized queries.

Non-correlated Subquery. The subquery is not correlated. page 8-43

Subquery under an IN predicate. The subquery is introduced by in. page 8-44

Subquery under an ANY predicate. The subquery is introduced by any. page 8-44

Subquery under an ALL predicate. The subquery is introduced by all. page 8-44

Subquery under an EXISTS
predicate.

The subquery is introduced by
exists.

page 8-44

Subquery under an EXPRESSION
predicate.

The subquery is introduced by an
expression, or the subquery is in the
select list.

page 8-44

Evaluate Grouped <ONCE, ONCE-
UNIQUE or ANY> AGGREGATE

or

Evaluate Ungrouped <ONCE, ONCE-
UNIQUE or ANY> AGGREGATE

The subquery uses an internal
aggregate.

page 8-47

page 8-45

EXISTS TABLE: nested iteration The query includes an exists, in, or
any clause, and the subquery is
flattened into a join.

page 8-49

Table 8-4: showplan messages for subqueries (continued)

Message Explanation See

8-38 Understanding Query Plans

showplan Messages for Subqueries Sybase SQL Server Release 11.0.x

Flattened Queries

When subqueries are flattened into existence joins, the output looks
like normal showplan output for a join, with the possible exception of
the message “EXISTS TABLE: nested iteration.”

This message indicates that instead of the normal join processing,
which looks for every row in the table that matches the join column,
SQL Server uses an existence join and returns TRUE as soon as the
first qualifying row is located. For more information on subquery
flattening, see “Flattening in, any, and exists Subqueries” on page
7-27.

SQL Server flattens the following subquery into an existence join:

select title
from titles
where title_id in
 (select title_id
 from titleauthor)
and title like "A Tutorial%"

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

FROM TABLE
 titles
 Nested iteration.
 Index : title_ix
 Ascending scan.
 Positioning by key.
 Keys are:
 title
 Using I/O Size 2 Kbytes.
 With LRU Buffer Replacement Strategy.

FROM TABLE
 titleauthor

SQL Server Performance and Tuning Guide 8-39

Sybase SQL Server Release 11.0.x showplan Messages for Subqueries

 EXISTS TABLE : nested iteration.
 Index : ta_ix
 Ascending scan.
 Positioning by key.
 Index contains all needed columns. Base table will
 not be read.
 Keys are:
 title_id
 Using I/O Size 2 Kbytes.
 With LRU Buffer Replacement Strategy.

Materialized Queries

When SQL Server materializes subqueries, the query is reformulated
into two steps:

1. The first step stores the results of the subquery in an internal
variable or in a worktable

2. The second step uses the internal variable results or the
worktable results in the outer query.

This query materializes the subquery into a worktable:

select type, title_id
from titles
where total_sales in (select max(total_sales)
 from sales_summary
 group by type)

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
The type of query is SELECT (into Worktable1).

 GROUP BY
 Evaluate Grouped MAXIMUM AGGREGATE.

 FROM TABLE
 sales_summary
 Nested iteration.
 Table Scan.
 Ascending scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes.
 With LRU Buffer Replacement Strategy.
 TO TABLE
 Worktable1.

8-40 Understanding Query Plans

showplan Messages for Subqueries Sybase SQL Server Release 11.0.x

 STEP 2
 The type of query is SELECT.

 FROM TABLE
 titles
 Nested iteration.
 Table Scan.
 Ascending scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes.
 With LRU Buffer Replacement Strategy.

 FROM TABLE
 Worktable1.
 EXISTS TABLE : nested iteration.
 Table Scan.
 Ascending scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes.
 With LRU Buffer Replacement Strategy.

The showplan message “EXISTS TABLE: nested iteration,” near the
end of the output, shows that SQL Server has performed an existence
join.

Structure of Subquery showplan Output

Whenever a query contains subqueries that are not flattened or
materialized:

• The showplan output for the outer query appears first. It includes
the message “Run subquery N (at nesting level N)” indicating the
point in the query processing where the subquery executes.

• For each nesting level, the query plans at that nesting level are
introduced by the message “NESTING LEVEL N SUBQUERIES
FOR STATEMENT N.”

• The plan for each subquery is introduced by the message
“QUERY PLAN FOR SUBQUERY N (at line N)”, and the end of
its plan is marked by the message “END OF QUERY PLAN FOR
SUBQUERY N.” This section of the output includes information
about:

- The type of query (correlated or uncorrelated)

- The predicate type (IN, ANY, ALL, EXISTS, or EXPRESSION)

SQL Server Performance and Tuning Guide 8-41

Sybase SQL Server Release 11.0.x showplan Messages for Subqueries

The structure is shown in Figure 8-1, using the showplan output from
this query:

select title_id
from titles
where total_sales > all (select total_sales
 from titles
 where type = 'business')

8-42 Understanding Query Plans

showplan Messages for Subqueries Sybase SQL Server Release 11.0.x

Figure 8-1: Subquery showplan output structure

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

 FROM TABLE
 titles
 Nested iteration.
 Table Scan.
 Ascending scan.
 Positioning at start of table.

 Run subquery 1 (at nesting level 1).
 Using I/O Size 2 Kbytes.
 With LRU Buffer Replacement Strategy.

NESTING LEVEL 1 SUBQUERIES FOR STATEMENT 1.

 QUERY PLAN FOR SUBQUERY 1 (at nesting level 1 and at line 3).

 Correlated Subquery.
 Subquery under an ALL predicate.

 STEP 1
 The type of query is SELECT.
 Evaluate Ungrouped ANY AGGREGATE.

 FROM TABLE
 titles
 EXISTS TABLE : nested iteration.
 Index : tp
 Ascending scan.
 Positioning by key.
 Keys are:
 type
 Using I/O Size 2 Kbytes.
 With LRU Buffer Replacement Strategy.

END OF QUERY PLAN FOR SUBQUERY 1.

Subquery is run here O
ut

er
 q

ue
ry

 p
la

n

Su
bq

ue
ry

 p
la

n

Su
bq

ue
ry

 d
el

im
ite

rs

Line number of SQL statement in
batch or stored procedure

Statement number of SQL statement
in batch or stored procedure

SQL Server Performance and Tuning Guide 8-43

Sybase SQL Server Release 11.0.x showplan Messages for Subqueries

Subquery Execution Message

Run subquery N (at nesting level N).

This message shows the place in the execution of the outer query
where the subquery execution takes place. SQL Server executes the
subquery at the point in the outer query where the optimizer finds it
should perform best.

The actual plan output for this subquery appears later under the
blocks of output for the subquery’s nesting level. The first variable in
this message is the subquery number; the second variable is the
subquery nesting level.

Nesting Level Delimiter Message

NESTING LEVEL N SUBQUERIES FOR STATEMENTN.

This message introduces the showplan output for all the subqueries at
a given nesting level. The maximum nesting level is 16.

Subquery Plan Start Delimiter

QUERY PLAN FOR SUBQUERYN (at line N).

This statement introduces the showplan output for a particular
subquery at the nesting level indicated by the previous NESTING
LEVEL message.

SQL Server provides line numbers to help you match query output
to your input.

Subquery Plan End Delimiter

END OF QUERY PLAN FOR SUBQUERYN.

This statement marks the end of the query plan for a particular
subquery.

Type of Subquery

Correlated Subquery.

Non-correlated Subquery.

Every subquery is either correlated or noncorrelated. showplan
evaluates the type of subquery and, if the subquery is correlated,

8-44 Understanding Query Plans

showplan Messages for Subqueries Sybase SQL Server Release 11.0.x

returns the message “Correlated Subquery.” Noncorrelated
subqueries are usually materialized, so their showplan output does not
include the normal subquery showplan messages.

A correlated subquery references a column in a table that is listed in
the from list of the outer query. The subquery’s reference to the
column is in the where clause, the having clause or the select list of the
subquery. A noncorrelated subquery can be evaluated
independently of the outer query.

Subquery Predicates

Subquery under an IN predicate.

Subquery under an ANY predicate.

Subquery under an ALL predicate.

Subquery under an EXISTS predicate.

Subquery under an EXPRESSION predicate.

Table 8-5 lists the showplan messages that identify the operator or
expression that introduces the subquery.

Subqueries introduced by in, any, all, or exists are quantified predicate
subqueries. Subqueries introduced by >, >=, <, <=, =, != are
expression subqueries.

Table 8-5: showplan messages for subquery predicates

Message

Subquery under an IN
predicate.

The subquery is introduced by in or not
in.

Subquery under an ANY
predicate.

The subquery is introduced by any.

Subquery under an ALL
predicate.

The subquery is introduced by all.

Subquery under an EXISTS
predicate.

The subquery is introduced by exists or
not exists.

Subquery under an
EXPRESSION predicate.

The subquery is introduced by an
expression, or the subquery is in the
select list.

SQL Server Performance and Tuning Guide 8-45

Sybase SQL Server Release 11.0.x showplan Messages for Subqueries

Internal Subquery Aggregates

Certain types of subqueries require special internal aggregates, as
listed in Table 8-6. SQL Server generates these aggregates
internally—they are not part of Transact-SQL syntax and cannot be
included in user queries.

Grouped or Ungrouped Messages

The message “Grouped” appears when the subquery includes a group
by clause and computes the aggregate for a group of rows.

The message “Ungrouped” appears when the subquery does not
include a group by clause and computes the aggregate for all rows in
the table that satisfy the correlation clause.

Quantified Predicate Subqueries and the ANY Aggregate

Evaluate Grouped ANY AGGREGATE.

Evaluate Ungrouped ANY AGGREGATE.

All quantified predicate subqueries that are not flattened use the
internal ANY aggregate. Do not confuse this with the any predicate.

The subquery returns 1 when a row from the subquery satisfies the
conditions of the subquery predicate. It returns 0 to indicate that no
row from the subquery matches the conditions.

Table 8-6: Internal subquery aggregates

Subquery Type Aggregate Effect

Quantified Predicate ANY Returns 0 or 1 to the outer query.

Expression ONCE Returns the result of the subquery.
Raises error 512 if the subquery
returns more than one value.

Subquery containing
distinct

ONCE-UNIQUE Stores the first subquery result
internally and compares each
subsequent result to the first. Raises
error 512 if a subsequent result
differs from the first.

8-46 Understanding Query Plans

showplan Messages for Subqueries Sybase SQL Server Release 11.0.x

For example:

select type, title_id
from titles
where price > all
 (select price
 from titles
 where advance < 15000)

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

 FROM TABLE
 titles
 Nested iteration.
 Table Scan.
 Ascending scan.
 Positioning at start of table.

 Run subquery 1 (at nesting level 1).
 Using I/O Size 2 Kbytes.
 With LRU Buffer Replacement Strategy.

NESTING LEVEL 1 SUBQUERIES FOR STATEMENT 1.

 QUERY PLAN FOR SUBQUERY 1 (at nesting level 1 and at line 4).

 Correlated Subquery.
Subquery under an ALL predicate.

 STEP 1
 The type of query is SELECT.

Evaluate Ungrouped ANY AGGREGATE.

 FROM TABLE
 titles
 EXISTS TABLE : nested iteration.
 Table Scan.
 Ascending scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes.
 With LRU Buffer Replacement Strategy.

 END OF QUERY PLAN FOR SUBQUERY 1.

SQL Server Performance and Tuning Guide 8-47

Sybase SQL Server Release 11.0.x showplan Messages for Subqueries

Expression Subqueries and the ONCE Aggregate

Evaluate Ungrouped ONCE AGGREGATE.

Evaluate Grouped ONCE AGGREGATE.

Expression subqueries must return only a single value. The internal
ONCE aggregate checks for the single result required by an
expression subquery.

This query returns one row for each title that matches the like
condition:

select title_id, (select city + " " + state
 from publishers
 where pub_id = t.pub_id)
from titles t
where title like "Computer%"

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

 FROM TABLE
 titles
 Nested iteration.
 Index : title_ix
 Ascending scan.
 Positioning by key.
 Keys are:
 title
 Using I/O Size 2 Kbytes.
 With LRU Buffer Replacement Strategy.

 Run subquery 1 (at nesting level 1).

NESTING LEVEL 1 SUBQUERIES FOR STATEMENT 1.

 QUERY PLAN FOR SUBQUERY 1 (at nesting level 1 and at line 1).

 Correlated Subquery.
 Subquery under an EXPRESSION predicate.

 STEP 1
 The type of query is SELECT.

 Evaluate Ungrouped ONCE AGGREGATE.

8-48 Understanding Query Plans

showplan Messages for Subqueries Sybase SQL Server Release 11.0.x

 FROM TABLE
 publishers
 Nested iteration.
 Table Scan.
 Ascending scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes.
 With LRU Buffer Replacement Strategy.

 END OF QUERY PLAN FOR SUBQUERY 1.

Subqueries with distinct and the ONCE-UNIQUE Aggregate

Evaluate Grouped ONCE-UNIQUE AGGREGATE.

Evaluate Ungrouped ONCE-UNIQUE AGGREGATE.

When the subquery includes distinct, the ONCE-UNIQUE aggregate
indicates that duplicates are being eliminated:

select pub_name from publishers
where pub_id =
(select distinct titles.pub_id from titles
 where publishers.pub_id = titles.pub_id
 and price > $1000)

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

 FROM TABLE
 publishers
 Nested iteration.
 Table Scan.
 Ascending scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes.
 With LRU Buffer Replacement Strategy.

 Run subquery 1 (at nesting level 1).

NESTING LEVEL 1 SUBQUERIES FOR STATEMENT 1.

 QUERY PLAN FOR SUBQUERY 1 (at nesting level 1 and at line 3).

 Correlated Subquery.
Subquery under an EXPRESSION predicate.

SQL Server Performance and Tuning Guide 8-49

Sybase SQL Server Release 11.0.x showplan Messages for Subqueries

 STEP 1
 The type of query is SELECT.

 Evaluate Ungrouped ONCE-UNIQUE AGGREGATE.

 FROM TABLE
 titles
 Nested iteration.
 Index : comp_i
 Ascending scan.
 Positioning by key.
 Keys are:
 price
 Using I/O Size 2 Kbytes.
 With LRU Buffer Replacement Strategy.

 END OF QUERY PLAN FOR SUBQUERY 1.

Existence Join Message

EXISTS TABLE: nested iteration

This message indicates a special form of nested iteration. In a regular
nested iteration, the entire table or its index is searched for qualifying
values. In an existence test, the query can stop the search as soon as it
finds the first matching value.

The types of subqueries that can produce this message are:

• Subqueries that are flattened to existence joins

• Subqueries that perform existence tests

Subqueries That Perform Existence Tests

There are several ways an existence test can be written in Transact-
SQL, such as exists, in, or =any. These queries are treated as if they were
written with an exists clause. The following example demonstrates
the showplan output with an existence test. This query cannot be
flattened because the outer query contains or.

8-50 Understanding Query Plans

showplan Messages for Subqueries Sybase SQL Server Release 11.0.x

select au_lname, au_fname
from authors
where exists
 (select *
 from publishers
 where authors.city = publishers.city)
or city = "New York"

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

 FROM TABLE
 authors
 Nested iteration.
 Table Scan.
 Ascending scan.
 Positioning at start of table.

 Run subquery 1 (at nesting level 1).
 Using I/O Size 2 Kbytes.
 With LRU Buffer Replacement Strategy.

NESTING LEVEL 1 SUBQUERIES FOR STATEMENT 1.

 QUERY PLAN FOR SUBQUERY 1 (at nesting level 1 and at line 4).

 Correlated Subquery.
 Subquery under an EXISTS predicate.

 STEP 1
 The type of query is SELECT.
 Evaluate Ungrouped ANY AGGREGATE.

 FROM TABLE
 publishers
 EXISTS TABLE : nested iteration.
 Table Scan.
 Ascending scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes.
 With LRU Buffer Replacement Strategy.

 END OF QUERY PLAN FOR SUBQUERY 1.

SQL Server Performance and Tuning Guide 9-1

9 Advanced Optimizing Techniques 9.

What Are Advanced Optimizing Techniques?

This chapter describes query processing options that affect the
optimizer’s choice of join order, index, I/O size and cache strategy.

If you have turned to this chapter without fully understanding the
materials presented in earlier chapters of this book, be careful when
you use the tools described in this chapter. Some of these tools allow
you to override the decisions made by SQL Server’s optimizer and
can have an extreme negative effect on performance if they are
misused. You need to understand their impact on the performance of
your individual query, and possible implications for overall
performance.

SQL Server’s advanced, cost-based optimizer produces excellent
query plans in most situations. But there are times when the
optimizer does not choose the proper index for optimal performance
or chooses a suboptimal join order, and you need to control the
access methods for the query. The options described in this chapter
allow you that control.

In addition, while you are tuning, you want to see the effects of a
different join order, I/O size, or cache strategy. Some of these options
let you specify query processing or access strategy without costly
reconfiguration.

SQL Server provides tools and query clauses that affect query
optimization and advanced query analysis tools that let you
understand why the optimizer makes the choices that it does.

➤ Note
This chapter suggests workarounds to certain optimization problems. If you

experience these types of problems, call Sybase Technical Support.

Specifying Optimizer Choices

SQL Server lets you specify these optimization choices:

• The order of tables in a join

• The number of tables evaluated at one time during join
optimization

9-2 Advanced Optimizing Techniques

Specifying Table Order in Joins Sybase SQL Server Release 11.0.x

• The index used for a table access

• The I/O size

• The cache strategy

In a few cases, the optimizer fails to choose the best plan. In some of
these cases, the plan it chooses is only slightly more expensive than
the “best” plan, so you need to weigh the cost of maintaining these
forced choices over the slightly slower performance.

The commands to specify join order, index, I/O size, or cache
strategy, coupled with the query-reporting commands like statistics io
and showplan, help you determine why the optimizer makes its
choices.

◆ WARNING!
Use these options with caution. The forced plans may be
inappropriate in some situations and cause very poor performance. If
you include these options in your applications, be sure to check their
query plans, I/O statistics, and other performance data regularly.

These options are generally intended for use as tools for tuning and
experimentation, not as long-term solutions to optimization
problems.

Specifying Table Order in Joins

SQL Server optimizes join orders in order to minimize I/O. In most
cases, the order that the optimizer chooses does not match the order
of the from clauses in your select command. To force SQL Server to
access tables in the order they are listed, use the command:

set forceplan [on|off]

The optimizer still chooses the best access method for each table. If
you use forceplan, specifying a join order, the optimizer may use
different indexes on tables than it would with a different table order,
or it may not be able to use existing indexes.

You might use this command as a debugging aid if other query
analysis tools lead you to suspect that the optimizer is not choosing
the best join order. Always verify that the order you are forcing
reduces I/O and logical reads by using set statistics io on and
comparing I/O with and without forceplan.

SQL Server Performance and Tuning Guide 9-3

Sybase SQL Server Release 11.0.x Specifying Table Order in Joins

If you use forceplan, your routine performance maintenance checks
should include verifying that the queries and procedures that use it
still require the option to improve performance.

You can include forceplan in the text of stored procedures.

forceplan example

This example is executed with these indexes on the tables in pubtune:

• Unique nonclustered on titles(title)

• Unique clustered on authors(au_id)

• Unique nonclustered on titleauthor(au_id, title_id)

Without forceplan, this query:

select title, au_lname
from titles t, authors a, titleauthor ta
where t.title_id = ta.title_id
and a.au_id = ta.au_id
and title like "Computer%"

joins the tables with the join order titles–titleauthor–authors, the join
order that the optimizer has chosen as the least costly.

Here is the showplan output for the unforced query:

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

FROM TABLE
 titles
 Nested iteration.
 Index : title_ix
 Ascending scan.
 Positioning by key.
 Keys are:
 title
 Using I/O Size 2 Kbytes.
 With LRU Buffer Replacement Strategy.

FROM TABLE
 titleauthor
 Nested iteration.
 Index : ta_au_tit_ix
 Ascending scan.

9-4 Advanced Optimizing Techniques

Specifying Table Order in Joins Sybase SQL Server Release 11.0.x

 Positioning at index start.
 Index contains all needed columns. Base table will not
be read.
 Using I/O Size 2 Kbytes.
 With LRU Buffer Replacement Strategy.

FROM TABLE
 authors
 Nested iteration.
 Using Clustered Index.
 Index : au_id_ix
 Ascending scan.
 Positioning by key.
 Keys are:
 au_id
 Using I/O Size 2 Kbytes.
 With LRU Buffer Replacement Strategy.

statistics io for the query shows a total of 154 physical reads and 2431
logical reads:

Table: titles scan count 1, logical reads: 29, physical
reads: 27
Table: authors scan count 34, logical reads: 102, physical
reads: 35
Table: titleauthor scan count 25, logical reads: 2300,
physical reads: 92

Total writes for this command: 0

If you use forceplan, the optimizer chooses a reformatting strategy on
titleauthor, resulting in this showplan report:

QUERY PLAN FOR STATEMENT 1(at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.

Worktable1 created for REFORMATTING.

 FROM TABLE
 titleauthor
 Nested iteration.
 Index : ta_au_tit_ix
 Ascending scan.
 Positioning at index start.
 Index contains all needed columns. Base table will not
be read.
 Using I/O Size 2 Kbytes.

SQL Server Performance and Tuning Guide 9-5

Sybase SQL Server Release 11.0.x Specifying Table Order in Joins

 With LRU Buffer Replacement Strategy.
 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.

 FROM TABLE
 titles
 Nested iteration.
 Index : title_ix
 Ascending scan.
 Positioning by key.
 Keys are:
 title
 Using I/O Size 2 Kbytes.
 With LRU Buffer Replacement Strategy.

 FROM TABLE
 authors
 Nested iteration.
 Table Scan.
 Ascending scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes.
 With LRU Buffer Replacement Strategy.

FROM TABLE
 Worktable1.
 Nested iteration.
 Using Clustered Index.
 Ascending scan.
 Positioning by key.
 Using I/O Size 2 Kbytes.
 With LRU Buffer Replacement Strateg

Table: titles scan count 1, logical reads: 29, physical
reads: 27
Table: authors scan count 25, logical reads: 5525, physical
reads: 221
Table: titleauthor scan count 1, logical reads: 92, physical
reads: 60
Table: Worktable1 scan count 125000, logical reads: 389350,
physical reads: 27
Total writes for this command: 187

Figure 9-1 shows the sequence of the joins and the number of scans
required for each query plan.

9-6 Advanced Optimizing Techniques

Specifying Table Order in Joins Sybase SQL Server Release 11.0.x

Figure 9-1: Extreme negative effects of using forceplan

Risks of Using forceplan

Forcing join order has these risks:

• Misuse can lead to extremely expensive queries.

• It requires maintenance. You must regularly check queries and
stored procedures that include forceplan. Also, future releases of
SQL Server may eliminate the problems which led you to
incorporate index forcing, so all queries using forced query plans
need to be checked when new releases are installed.

Things to Try Before Using forceplan

As the preceding example shows, specifying the join order can be
risky. Here are options to try before using forceplan:

• Check showplan output to determine whether index keys are used
as expected.

• Use dbcc traceon(302) to look for other optimization problems.

• Be sure that update statistics been run on the index recently.

Table scansUses Index,
finds 25 rows

titleauthor authors

Uses index,
finds 25 rows

25
 sc

an
s

Optimized query:

Query using forceplan:

titles

34
 sc

an
s

Uses index,
finds 34 rows

titlestitleauthor authors Worktable1

25
 sc

an
s

25
 *5

00
0 s

ca
ns

Reformatting
required

Uses index

Uses index
on worktable

SQL Server Performance and Tuning Guide 9-7

Sybase SQL Server Release 11.0.x Increasing the Number of Tables Considered by the Optimizer

• If the query joins more than four tables, use set table count to see if
it results in an improved join order. See “Increasing the Number
of Tables Considered by the Optimizer” on page 9-7.

Increasing the Number of Tables Considered by the Optimizer

As described in “Optimizing Joins” on page 7-13, SQL Server
optimizes joins by considering permutations of four tables at a time.
If you suspect that an incorrect join order is being chosen for a query
that joins more than four tables, you can use the set table count option
to increase the number of tables that are considered at the same time.
The syntax is:

set table count int_value

The maximum value is 8; the minimum value is 1. As you decrease
the value, you reduce the chance that the optimizer will consider all
the possible join orders.

Increasing the number of tables considered at once during join
ordering can greatly increase the time it takes to optimize a query.

With SQL Server’s default four-at-a-time optimization, it takes 3,024
permutations to consider all the join possibilities. With eight-table-
at-a-time optimization, it takes 40,320 permutations.

Since the time to optimize the query increases with each additional
table, this option is most useful when the actual execution savings
from improved join order outweighs the extra optimizing time.

Use statistics time to check parse and compile time and statistics io to
verify that the improved join order is reducing physical and logical
I/O.

If increasing table count produces an improvement in join
optimization, but increases CPU time unacceptably, rewrite the from
clause in the query, specifying the tables in the join order indicated
by showplan output, and use forceplan to run the query. Your routine
performance maintenance checks should include verifying that the
join order you are forcing still improves performance.

Specifying an Index for a Query

A special clause, (index index_name), for the select, update, and delete
statements allows you to specify an index for a particular query. The
syntax is:

9-8 Advanced Optimizing Techniques

Specifying an Index for a Query Sybase SQL Server Release 11.0.x

select select_list
from table_name
 (index index_name)
 [, table_name ...]
where ...

delete table_name
from table_name (index index_name) ...

update table_name set col_name = value
 from table_name (index index_name) ...

Here’s an example:

select pub_name, title
 from publishers p, titles t (index date_type)
 where p.pub_id = t.pub_id
 and type = "business"
 and pubdate > "1/1/93"

Specifying an index in a query can be helpful when you suspect that
the optimizer is choosing a suboptimal query plan. When you use
this option:

• Always check statistics io for the query to see whether the index
you choose requires less I/O than the optimizer’s choice.

• Be sure to test a full range of valid values for the query clauses,
especially if you are tuning range queries, since the access
methods for these queries are sensitive to the size of the range. In
some cases, skew of values in a table or out-of-data statistics may
be other causes for apparent failure to use the correct index.

Use this option only after testing to be certain that the query
performs better with the specified index option. Once you include
this index option in applications, you should check regularly to be
sure that the resulting plan is still superior to other choices that the
optimizer makes.

If you want to force a table scan, use the table name in place of
index_name.

➤ Note
If you have a nonclustered index with the same name as the table,

attempting to specify a table name causes the nonclustered index to be

used. You can force a table scan using select select_list from tableA (0).

SQL Server Performance and Tuning Guide 9-9

Sybase SQL Server Release 11.0.x Specifying I/O Size in a Query

Risks of Specifying Indexes in Queries

Specifying indexes has these risks:

• Changes in the distribution of data could make the forced index
less efficient than other choices.

• Dropping the index means that all queries and procedures that
specify the index print an informational message indicating that
the index does not exist. The query is optimized using the best
available index or other access method.

• Maintenance costs increase, since all queries using this option
need to be checked periodically. Also, future releases of SQL
Server may eliminate the problems which led you to incorporate
index forcing, so all queries using forced indexes should be
checked when new releases are installed.

Things to Try Before Specifying Indexes

Before specifying an index in queries:

• Check showplan output for the “Keys are” message to be sure that
the index keys are being used as expected.

• Use dbcc traceon(302) to look for other optimization problems.

• Be sure that update statistics has been run on the index recently.

Specifying I/O Size in a Query

If your SQL Server is configured for large I/Os in the default data
cache or in named data caches, the optimizer can decide to use large
I/O for:

• Queries that scan entire tables

• Range queries using clustered indexes, such as queries using >, <,
> x and < y, between, and like "charstring%"

• Queries that use covering nonclustered indexes

In these cases, disk I/O can access up to eight pages simultaneously,
if the cache used by the table or index is configured for it.

Each named data cache can have several pools, each with a different
I/O size. Specifying the I/O size in a query causes the I/O for that
query to take place in the pool that is configured for that size. See

9-10 Advanced Optimizing Techniques

Specifying I/O Size in a Query Sybase SQL Server Release 11.0.x

Chapter 9, “Configuring Data Caches” in the System Administration
Guide for information on configuring named data caches.

To specify a particular I/O size, add the prefetch specification to the
index clause of a select, delete, or update statement. The syntax is:

select select_list
from table_name
 (index index_name prefetch size)
 [, table_name ...]
where ...

delete from table_name (index index_name
prefetch size) ...

update table_name set col_name = value
 from table_name (index index_name
 prefetch size) ...

Valid values for size are 2, 4, 8, and 16. If no pool of the specified size
exists in the data cache used by the object, the optimizer chooses the
best available size.

If there is a clustered index on au_lname, this query performs 16K I/O
while it scans the data pages:

select *
from authors (index au_names prefetch 16)
 where au_lname like "Sm%"

If a query normally performs prefetch, and you want to check its I/O
statistics with 2K I/O, you can specify a size of 2K:

select type, avg(price)
 from titles (index type_price prefetch 2)
 group by type

➤ Note
If you are experimenting with prefetch sizes and checking statistics i/o for

physical reads, you may need to clear pages from the cache so that SQL

Server will perform physical I/O on the second execution of a query. If the

table or index, or its database, is bound to a named data cache, you can

unbind and rebind the object. If the query uses the default cache, or if other

tables or indexes are bound to the object’s cache, you can run queries on

other tables that perform enough I/O to push the pages out of the memory

pools.

SQL Server Performance and Tuning Guide 9-11

Sybase SQL Server Release 11.0.x Specifying I/O Size in a Query

Index Type and Prefetching

To perform prefetching on the data pages, specify either the clustered
index name, or the table name. To perform prefetching on the leaf
level pages of a nonclustered index (for covered queries, for
example), specify the nonclustered index name.

When prefetch Specification Is Not Followed

Normally, when you specify an I/O size in a query, the optimizer
incorporates the I/O size into the query’s plan. However, the
specification cannot be followed:

• If the cache is not configured for I/O of the specified size, the
optimizer substitutes the “best” size available.

• If any of the pages included in that I/O request are in cache. If the
I/O size specified is eight data pages, but one of the pages is
already in the 2K pool, SQL Server performs 2K I/O on the rest of
the pages for that I/O request.

• If the page is on the first extent in an allocation unit. This extent
holds the allocation page for the allocation unit, and only 7 data
pages.

• If there are no buffers available in the pool for that I/O size, SQL
Server uses the next lowest available size.

• If prefetching has been turned off for the table or index with
sp_cachestrategy.

The system procedure sp_sysmon reports on prefetches requested and
denied for each cache. See “Data Cache Management” on page 19-46.

set prefetch on

By default, SQL Server checks whether prefetching is useful for all
queries. To disable prefetching during a session, use the command:

Table 9-1: Index name and prefetching

Index Name Parameter Prefetching Performed On

Table name Data pages

Clustered index name Data pages

Nonclustered index name Leaf pages of nonclustered index

9-12 Advanced Optimizing Techniques

Specifying the Cache Strategy Sybase SQL Server Release 11.0.x

set prefetch off

To re-enable prefetching, use the command:

set prefetch on

If prefetching is turned off for an object with sp_cachestrategy, this
command does not override that setting.

If prefetching is turned off for a session with set prefetch off, you cannot
override it by specifying a prefetch size in a select, delete, or insert
command.

The set prefetch command takes effect in the same batch in which it is
run, so it can be included in stored procedures to affect the execution
of the queries in the procedure.

Specifying the Cache Strategy

For queries that scan a table’s data pages or the leaf level of a
nonclustered index (covered queries), the SQL Server optimizer
chooses one of two cache replacement strategies: the fetch-and-
discard (MRU) strategy or the LRU strategy. See “Overview of Cache
Strategies” on page 3-15 for more information about these strategies.

The optimizer usually chooses fetch-and-discard (MRU) strategy for:

• Any query that table scans

• A range query that uses a clustered index

• A covered query that scans the leaf level of a nonclustered index

• An inner table in a join, if the inner table is larger than the cache

• The outer table of a join, since it needs to be read only once

You can affect the cache strategy for objects:

• By specifying lru or mru in a select, update, or delete statement

• By using sp_cachestrategy to disable or re-enable mru strategy

If you specify MRU strategy and a page is already in the data cache,
the page is placed at the MRU end of the cache, rather than at the
wash marker.

Specifying the cache strategy only affects data pages and the leaf
pages of indexes. Root and intermediate pages always use the LRU
strategy.

SQL Server Performance and Tuning Guide 9-13

Sybase SQL Server Release 11.0.x Controlling Prefetching and Cache Strategies for Database Objects

Specifying Cache Strategy in select, delete, and update Statements

You can use lru or mru (fetch-and-discard) in a select, delete, or update
command to specify the I/O size for the query:

select select_list
from table_name
 (index index_name prefetch size [lru|mru])
 [, table_name ...]
where ...

delete from table_name (index index_name
prefetch size [lru|mru]) ...

update table_name set col_name = value
 from table_name (index index_name

prefetch size [lru|mru]) ...

This query adds the LRU replacement strategy to the 16K I/O
specification:

select au_lname, au_fname, phone
 from authors (index au_names prefetch 16 lru)

For more discussion of specifying a prefetch size, see “Specifying I/O
Size in a Query” on page 9-9.

Controlling Prefetching and Cache Strategies for Database Objects

Status bits in sysindexes identify whether a table or index should be
considered for prefetching or for MRU replacement strategy. By
default, both are enabled. To disable or re-enable these strategies, use
the sp_cachestrategy system procedure. The syntax is:

sp_cachestrategy dbname , [ownername .] tablename
[, indexname | "text only" | "table only"
[, { prefetch | mru }, { "on" | "off"}]]

This command turns the prefetch strategy off for the au_name_index
of the authors table:

sp_cachestrategy pubtune, authors, au_name_index,
prefetch, "off"

This command re-enables MRU replacement strategy for the titles
table:

sp_cachestrategy pubtune, titles, "table only",
mru, "on"

Only a System Administrator or the object owner can change the
cache strategy status of an object.

9-14 Advanced Optimizing Techniques

dbcc traceon 302 Sybase SQL Server Release 11.0.x

Getting Information on Cache Strategies

To see the cache strategy in effect for a given object, execute
sp_cachestrategy, including only the database and object name:

sp_cachestrategy pubtune, titles

object name index name large IO MRU
---------------- ---------------- -------- --------
titles NULL ON ON

showplan output shows cache strategy for each object, including
worktables.

dbcc traceon 302

dbcc traceon (302) can often help you understand why the optimizer
makes choices that seem incorrect. It can help you debug queries and
help you decide whether to use specific options, like specifying an
index or a join order for a particular query. It can also help you
choose better indexes for your tables.

showplan tells you the final decisions that the optimizer makes about
your queries. dbcc traceon (302) helps you understand why the
optimizer made the choices that it did. When you turn on this trace
facility, you eavesdrop on the optimizer as it examines query clauses.

The output from this trace facility is more cryptic than showplan
output, but can go further in explaining such questions as why a
table scan is done rather than an indexed access, why index1 is
chosen rather than index2, or why a reformatting strategy is applied.
The trace provides detailed information on the costs the optimizer
has estimated for each permutation of the table, search clause, and
join clause as well as how those costs were determined.

Invoking the dbcc Trace Facility

Execute the following command from an isql batch followed by the
query or stored procedure call you want to examine:

dbcc traceon(3604, 302)

This is what the trace flags mean:

Trace Flag Explanation

3604 Directs trace output to the client rather than the errorlog

302 Print trace information on index selection

SQL Server Performance and Tuning Guide 9-15

Sybase SQL Server Release 11.0.x dbcc traceon 302

To turn off the output, use:

dbcc traceoff(3604, 302)

General Tips for Tuning with This Trace Facility

When you trace queries through this facility, run your queries in the
same manner as your application, as follows:

• Supply the same parameters and values to your stored
procedures or SQL statements.

• If the application uses cursors, use cursors in your tests.

Be very careful to ensure that your trace tests cause the optimizer to
make the same decisions as in your application. You must supply the
same parameters and values to your stored procedures or where
clauses.

If you are using stored procedures, make sure that they are actually
being optimized during the trial by executing them with recompile.

Checking for Join Columns and Search Arguments

In most situations, SQL Server can use only one index per table in a
query. This means the optimizer must often choose between indexes
when there are multiple where clauses supporting both search
arguments and join clauses. The optimizer’s first step is to match
search arguments and join clauses to available indexes.

The most important item that you can verify using this trace facility
is that the optimizer is evaluating all possible where clauses included
in each Transact-SQL statement.

If a clause is not included in this output, then the optimizer has
determined it is not a valid search argument or join clause. If you
believe your query should benefit from the optimizer evaluating this
clause, find out why the clause was excluded, and correct it if
possible. The most common reasons for “non-optimizable” clauses
include:

• Data type mismatches

• Use of functions, arithmetic, or concatenation on the column

• Numerics compared against constants that are larger than the
definition of the column

9-16 Advanced Optimizing Techniques

dbcc traceon 302 Sybase SQL Server Release 11.0.x

See “Search Arguments and Using Indexes” on page 7-8 for more
information on requirements for search arguments.

Determine How the Optimizer Estimates I/O Costs

Identifying how the optimizer estimates I/O often leads to the root
of the problems and to solutions. You will be able to see when the
optimizers uses your distribution page statistics and when it uses
default values.

Trace Facility Output

Each set of clauses evaluated by the optimizer is printed and
delimited within two lines of asterisks. If you issue an unqualified
query with no search arguments or join clause, this step is not
included in the output, unless the query is covered (that is, a
nonclustered index contains all referenced columns).

Output for each qualified clause looks like this:

Entering q_score_index() for table ’ name’ (objectid obj_id ,
varno = varno).
The table has X rows and Y pages.
Scoring the clause_type CLAUSE

column_name operator [column_name }

<other query specific info explained later>

q_score_index() is the name of a routine that SQL Server runs to cost
index choices. It finds the best index to use for a given table and set
of clauses. The clauses can be either constant search arguments or
join clauses. There is a wealth of information contained in this
routine’s output. The next few pages evaluate each line separately.

Identifying the Table

The first line identifies the table name and its associated object ID.
The actual output for this line looks like this:

Entering q_score_index() for table ’titles’ (objecti 208003772),
varno = 0

SQL Server Performance and Tuning Guide 9-17

Sybase SQL Server Release 11.0.x dbcc traceon 302

The optimizer analyzes all search arguments for all tables in each
query, followed by all join clauses for each table in the query.

Therefore, you first see q_score_index() called for all tables in which the
optimizer has found a search clause. The routine numbers the tables
in the order in which they were specified in the from clause and
displays the numbers as the varno. It starts numbering with 0 for the
first table.

Any search clause not included in this section should be evaluated to
determine whether its absence impacts performance.

Following the search clause analysis, q_score_index() is called for all
tables where the optimizer has found a join clause. As above, any join
clause not included in this section should be evaluated to determine
whether its absence is impacting performance.

Estimating Table Size

The next line prints the size of the table in both rows and pages:

 The table has 5000 rows and 624 pages.

These sizes are pulled from the system tables where they are
periodically maintained. There are some known problems where
inaccurate row estimates cause bad query plans, so verify that this is
not the cause of your problem.

Identifying the where Clause

The next two lines indicate the type of clause and a representation of
the clause itself with column names and abbreviations for the
operators. It indicates:

• That it is evaluating a search clause, like this:

Scoring the SEARCH CLAUSE:

 au_fname EQ

• That it is evaluating a join clause, like this:

Scoring the JOIN CLAUSE:

 au_id EQ au_id

All search clauses for all tables are evaluated before any join clauses
are evaluated.

9-18 Advanced Optimizing Techniques

dbcc traceon 302 Sybase SQL Server Release 11.0.x

The operator codes are defined in Table 9-2.

Output for Range Queries

If your queries include a range query or clauses that are treated like
range queries, they are evaluated in a single analysis to produce an
estimate of the number of rows for the range. For example,

Scoring the SEARCH CLAUSE:
 au_lname LT
 au_lname GT

Range queries include:

• Queries using the between clause

• Interval clauses with and on the same column name, such as:

datecol1 >= "1/1/94" and datecol1 < "2/1/94"

• like clauses such as:

like "k%"

Specified Indexes

If the query has specified the use of a specific index by including the
index keyword and the index name in parentheses after the table
name in the from clause, this is noted in the output:

User forces index IndexID .

Specifying an index prevents consideration of other alternatives.

Table 9-2: Operators in dbcc traceon(302) output

dbcc output Comparison

EQ Equality comparisons (=)

LT Less than comparisons (<)

LE Less than or equal to comparisons (<=)

GT Greater than comparisons (>)

GE Greater than or equal to comparisons (>=)

NE Not equals (!=)

ISNULL is null comparison

ISNOTNULL is not null comparison

SQL Server Performance and Tuning Guide 9-19

Sybase SQL Server Release 11.0.x dbcc traceon 302

If the I/O size and cache strategy are also included in the query, these
messages are printed:

User forces data prefetch of 8K

User forces LRU buffer replacement strategy

Calculating Base Cost

The next line of output displays the cost of a table scan for
comparison, provided that there is at least one other qualification or
index that can be considered. It reports index ID 0 and should match
the table size estimate displayed earlier. The line looks like this:

Base cost: indid: IndexID rows: rows pages: pages prefetch: <S|N>
 I/O size: io_size cacheid: cacheID replace: <LRU | MRU>

Here is an example:

Base cost: indid: 0 rows: 5000 pages: 624 prefetch: N
 I/O size: 2 cacheid: 0 replace: LRU

Verify page and row counts for accuracy. Inaccurate counts can cause
bad plans. To get a completely accurate count, use the set statistics io on
command along with a select * from tablename query. In a VLDB (very
large database) or in 24x7 shops (applications that must run 24 hours
a day, 7 days a week), where that is not practical, you may need to
rely on the reasonable accuracy of the sp_spaceused system procedure.
dbcc allocation-checking commands print the object size and correct
the values on which sp_spaceused and other object-size estimates are
based.

Table 9-3: Base cost output

Output Meaning

indid The index ID from sysindexes; 0 for the table itself.

rows The number of rows in the table.

pages The number of pages in the table.

prefetch Whether prefetch would be considered for the table scan.

I/O size The I/O size to be used.

cacheid The ID of the data cache to be used.

replace The cache replacement strategy to be used, either LRU or MRU.

9-20 Advanced Optimizing Techniques

dbcc traceon 302 Sybase SQL Server Release 11.0.x

Costing Indexes

Next, the optimizer evaluates each useful index for a given clause to
determine its cost. The optimizer first looks for a unique index that is
totally qualified—meaning that the query contains where clauses on
each of the keys in the index. If such an index is available, the
optimizer immediately knows that only a single row satisfies the
clause, and it prints the following line:

Unique index_type index found--return rows 1 pages pages

The index_type is either clustered or nonclustered. There are three
possibilities for the number of pages:

• The unique index is clustered. The logical I/O cost is the height of
the index tree. In a clustered index, the data pages are the leaf
level of the index, so the data page access is included.

• The unique nonclustered index covers the query. The logical I/O
is the height of the index tree. The data page access is not needed,
and not counted.

• The unique nonclustered index does not cover the query. An
additional logical I/O is necessary to get from the leaf level of the
nonclustered index to the data page, so the logical I/O cost is the
height of the nonclustered index plus one page.

If the index is not unique, then the optimizer determines the cost, in
terms of logical I/Os, for the clause. Before doing so, it prints this
line:

Relop bits are: integer

This information can be ignored. It merely restates the comparison
operator (that is, =, <, >, interval, and so on) listed in the q_score_index()
line mentioned earlier as an integer bitmap. This information is only
necessary for Sybase Engineering to debug optimizer problems and
it has no value for customer-level troubleshooting.

To estimate the I/O cost for each clause, the optimizer has a number
of tools available to it, depending on the clause type (search clause or
join clause) and the availability of index statistics. For more
information, see “Index Statistics” on page 6-35.

Index Statistics Used in dbcc 302

For each index, SQL Server keeps a statistical histogram of the
indexed column’s data distribution. This histogram is built
automatically during index creation and is stored in a distribution

SQL Server Performance and Tuning Guide 9-21

Sybase SQL Server Release 11.0.x dbcc traceon 302

page with the index unless the table is empty. This histogram is a
sampling of the index key values every N rows.

N is dependent on the full size of the key (including overhead) and
the number of rows in the table. Each sampling is known as a step.
Since the optimizer knows how many rows exist between steps and
the density of keys in the index, it can estimate the number of rows
satisfying a clause with reasonable accuracy.

Evaluating Statistics for Search Clauses

For search clauses, the optimizer can look up specific values on the
distribution page, if these values are known at compile time. In this
case, it first identifies the distribution page and the number of steps
with the following trace output:

Qualifying stat page; pgno: page_number steps: steps

For atomic datatypes (datatypes such as tinyint, smallint, int, char,
varchar, binary, and varbinary, which are not internally implemented
as structures), it prints the constant value the search argument
supplied to the optimizer. It looks like this:

Search value: constant_value

If the value is implemented as a structure, the following message is
output to indicate that the optimizer does not waste time building
the structure’s printable representation:

*** CAN’T INTERPRET ***

Distribution Page Value Matches

If an exact match is found on the distribution page, the following
message is printed:

Match found on statistics page

This is followed by information pertaining to the number and
location of step values found on the distribution page. Since the
optimizer knows approximately how many rows exist between step
values, it uses this information to estimate how many logical I/Os
would be performed for this clause. To indicate this information, one
of the following messages is displayed:

equal to several rows including 1st or last -use endseveralSC

9-22 Advanced Optimizing Techniques

dbcc traceon 302 Sybase SQL Server Release 11.0.x

This indicates that several steps matched the constant and that they
were found either at the beginning or at the end of the distribution
page.

equal to a single row (1st or last) -use endsingleSC

This indicates that only one step matched the constant and it was
found either at the beginning or at the end of the distribution page.

equal to several rows in middle of page -use midseveralSC

This indicates that several steps matched the constant and that they
were found in the middle of the distribution page.

equal to single row in middle of page -use midsingleSC

This indicates that several steps matched the constant and that they
were found in the middle of the distribution page.

Values Between Steps or Out of Range

If an exact match of the search value is not found on the distribution
page, the optimizer uses different formulas in its statistical estimate.
The computation is based on the relational operator used in the
clause, the step number, the number of steps, and the density. First,
the optimizer needs to find the first step value that is less than the
search value. In these cases, you see the following message:

No steps for search value -qualpage for LT search value finds

Depending on whether the search value is outside the first or last
step value or contained within steps, the optimizer will print one of
the following messages:

value < first step -use outsideSC

value > last step -use outsideSC

The first message indicates that the query’s search value is smaller
than the first entry on the distribution page. The second message
indicates that the query’s search value is larger than the last entry on
the distribution page. If the constant is a valid value in the table,
these messages indicate that update statistics may need to be run.

value between step K, K+1, K= step_number -use betweenSC

This message indicates that the query’s search value falls between
two steps on the distribution page. You can only confirm here that
the step number seems reasonable.

For example, if the step value of “K” is 3 and you suspect that the
query’s search value should fall towards the end of the table,

SQL Server Performance and Tuning Guide 9-23

Sybase SQL Server Release 11.0.x dbcc traceon 302

something could be wrong. It would be reasonable then to expect the
value of “K” to be larger (that is, towards the end of the distribution
page). This may be another indication that update statistics needs to be
run.

Range Query Messages

For a range query, the trace facility looks up the steps for both the
upper and lower bounds of the query. This message appears:

Scoring SARG interval, lower bound.

After displaying the costing estimates for the lower bound, the net
selectivity is calculated and displayed as:

Net selectivity of interval: float_value

Search Clauses with Unknown Values

A common problem the optimizer faces is that values for search
criteria are not known until run time. Common scenarios that make
the optimizer unable to use distribution statistics include:

• where clauses based on expressions. For example:

select *
 from tableName
 where dateColumn >= getdate()

• where clauses based on local variables. For example:

declare @fKey int
select @fKey=lookUpID
 from mainTable
 where pKey = "999"
select *
 from lookUpTable
 where pKey >= @fKey

In cases like these, the optimizer tries to make intelligent guesses
based on average values. For example, if a distribution page exists
for the index and the query is an equality comparison, the optimizer
uses the density of the index (that is, the average number of
duplicates) to estimate the number of rows.

Otherwise, the optimizer uses a “magic” number: it assumes that 10
percent of the table will match an equality comparison, 25 percent of
the table will match a closed interval comparison, and 33 percent of
the table will match for inequality and open interval comparisons. In
these cases, the trace facility prints:

9-24 Advanced Optimizing Techniques

dbcc traceon 302 Sybase SQL Server Release 11.0.x

SARG is a subbed VAR or expr result or local variable (constat =
number) -use magicSC or densitySC

Stored procedures and triggers need special attention to ensure
efficient query plans. Many procedures are coded with where clauses
based on input parameters. This behavior can cause some difficulty
in troubleshooting. Consider a query whose single where clause may
be very selective under one parameter and return nearly the entire
table under another. These types of stored procedures can be difficult
to debug, since the procedure cache could potentially have multiple
copies in cache, each with a different plan. Since these plans are
already compiled, users may be assigned a plan that may not be
appropriate for their input parameter.

Another reason for the optimizer being unable to use an index’s
distribution table is that the distribution page can be nonexistent.
This occurs:

• When an index is created before any data is loaded.

• When truncate table is used, and then the data is loaded.

In these cases, the optimizer uses the above mentioned “magic”
numbers to estimate I/O cost and you see:

No statistics page -use magicSC

At this point, the selectivity and cost estimates are displayed.

Cost Estimates and Selectivity

For each qualified clause, the trace facility displays:

• The index ID

• The selectivity as a floating-point value

• The cost estimate in both rows and pages

These values are printed as variables in this message:

Estimate: indid indexID , selectivity float_val , rows rows pages
pages

If this clause had no qualifications, but the optimizer found a
nonclustered index that covered the entire query, it identifies the
table, since it would not be listed with a q_score_index() section. In this
case, you see:

Finishing q_score_index() for table table_name (objectid) ID .

At this point, the cheapest index is examined and its costs are
displayed:

SQL Server Performance and Tuning Guide 9-25

Sybase SQL Server Release 11.0.x dbcc traceon 302

Cheapest index is index IndexID , costing pages pages and
generating rows rows per scan using no data prefetch (size 2)
on dcacheid N with [MRU|LRU] replacement

This can be somewhat misleading. If there are any nonclustered
indexes that match the search arguments in the query, the costs for
the cheapest index are printed here, even though a table scan may be
used to execute the query. The actual decision on whether to perform
a table scan or nonclustered index access is delayed until join order is
evaluated (the next step in the optimization process).

This is because the most accurate costing of a nonclustered index
depends on the ratio of physical vs. logical I/O and the amount of
cache memory available when that table is chosen. Therefore, if the
base cost (table scan cost) printed earlier is significantly less than the
“cheapest index” shown here, it is more likely that a table scan will
be used. Use showplan to verify this.

Estimating Selectivity for Search Clauses

The selectivity for search clauses is printed as the fraction of the rows
in the table expected to qualify. Therefore, the lower the number, the
more selective the search clause and the fewer the rows that are
expected to qualify. Search clauses are output as:

Search argument selectivity is float_val .

Estimating Selectivity for Join Clauses

For joins, the optimizer never looks up specific values on the
distribution page. At compile time, the optimizer has no known
values for which to search. It needs to make a sophisticated estimate
about costing these clauses.

If an index with a distribution page is available, the optimizer uses
the density table, which stores the average number of duplicate keys
in the index. All leading permutations of the composite key have
their density stored, providing accurate information for multi-
column joins.

If no distribution page is available for this index, the optimizer
estimates the join selectivity to be 1 divided by the number of rows in
the smaller table. This gives a rough estimate of the cardinality of a
primary key-foreign key relationship with even data distribution. In
both of these cases, the trace facility prints the calculated selectivity
and cost estimates, as described below.

9-26 Advanced Optimizing Techniques

dbcc traceon 302 Sybase SQL Server Release 11.0.x

The selectivity of the clause is printed last. Join clauses are output as:

Join selectivity is float_val .

The selectivity for join clauses is output as the whole number of the
fraction 1 divided by the selectivity. Therefore, the higher the
number selectivity, the more selective the join clause, and the fewer
the rows are expected to qualify.

At this point, the optimizer has evaluated all indexes for this clause
and will proceed to optimize the next clause.

SQL Server Performance and Tuning Guide 10-1

10 Transact-SQL Performance Tips 10.

Introduction

This chapter presents certain types of SQL queries where simple
changes in the query can improve performance. This chapter
emphasizes only queries and does not focus on schema design.

Many of the tips are not related to the SQL Server query optimizer.

These tips are intended as suggestions and guidelines, not absolute
rules. You should use the query analysis tools to test the alternate
formulations suggested here.

Performance of these queries may change with future releases of
SQL Server.

“Greater Than” Queries

This query, with an index on int_col:

select * from table where int_col > 3

uses the index to find the first value where int_col equals 3, and then
scans forward to find the first value greater than 3. If there are many
rows where int_col equals 3, the server has to scan many pages to find
the first row where int_col is greater than 3.

It is probably much more efficient to write this query like this:

select * from table where int_col >= 4

This optimization is easier with integers, but more difficult with
character strings and floating-point data. You need to know your
data.

not exists Tests

In subqueries and if statements, exists and in perform faster than not
exists and not in when the values in the where clause are not indexed.
For exists and in, SQL Server can return TRUE as soon as a single row
matches. For the negated expressions, it must examine all values to
determine that there are not matches.

In if statements, you can easily avoid not exists by rearranging your
statement groups between the if portion and the else portion of the
code. This not exists test may perform slowly:

10-2 Transact-SQL Performance Tips

Variables vs. Parameters in where Clauses Sybase SQL Server Release 11.0.x

if not exists (select * from table where...)
 begin
 /* Statement Group 1 */
 end
else
 begin
 /* Statement Group 2 */
 end

It can be rewritten as:

if exists (select * from table where...)
 begin
 /* Statement Group 2 */
 end
else
 begin
 /* Statement Group 1 */
 end

You can avoid the not else in if statements even without an else clause.
Here is an example:

if not exists (select * from table where...)
 begin
 /* Statement Group */
 end

This query can be rewritten using goto to skip over the statement
group:

if exists (select * from table where)
 begin
 goto exists_label
 end
/* Statement group */
exists_label:

Variables vs. Parameters in where Clauses

The optimizer knows the value of a parameter to a stored procedure
at compile time, but it cannot predict the value of a declared variable.
Providing the optimizer with the values of search arguments in the
where clause of a query can help the optimizer make better choices.
Often, the solution is to split up stored procedures:

• Set the values of variables in the first procedure.

• Call the second procedure and pass those variables as parameters
to the second procedure.

SQL Server Performance and Tuning Guide 10-3

Sybase SQL Server Release 11.0.x Variables vs. Parameters in where Clauses

For example, the optimizer cannot optimize the final select in the
following procedure, because it cannot know the value of @x until
execution time:

create procedure p
as
 declare @x int
 select @x = col
 from tab where ...
 select *
 from tab2
 where indexed_col = @x

When SQL Server encounters unknown values, it uses
approximations to develop a query plan, based on the operators in
the search argument, as shown in Table 10-1.

The following example shows the procedure split into two
procedures. The first procedure calls the second:

create procedure base_proc
as
 declare @x int
 select @x = col
 from tab where ...
 exec select_proc @x

create procedure select_proc @x int
as
 select *
 from tab2
 where col2 = @x

When the second procedure executes, SQL Server knows the value of
@x and can optimize the select statement. Of course, if you modify the
value of @x in the second procedure before it is used in the select
statement, the optimizer may choose the wrong plan because it
optimizes the query based on the value of @x at the start of the
procedure. If @x has different values each time the second procedure

Table 10-1: Density approximations for unknown search arguments

Operator Density Approximation

= Average proportion of duplicates in the column

< or > 33 percent

between 25 percent

10-4 Transact-SQL Performance Tips

Count vs. Exists Sybase SQL Server Release 11.0.x

is executed, leading to very different query plans, you may want to
use with recompile.

Count vs. Exists

Do not use the count aggregate in a subquery to do an existence check:

select *
 from tab
 where 0 < (select count(*) from tab2 where ...)

Instead, use exists (or in):

select *
 from tab
 where exists (select * from tab2 where ...)

Using count to do an existence check is slower than using exists.

When you use count, SQL Server does not know that you are doing an
existence check. It counts all matching values, either by doing a table
scan or by scanning the smallest nonclustered index.

When you use exists, SQL Server knows you are doing an existence
check. When it finds the first matching value, it returns TRUE and
stops looking. The same applies to using count instead of in or any.

or Clauses vs. Unions in Joins

SQL Server cannot optimize join clauses that are linked with or and
may perform Cartesian products to process the query.

➤ Note
SQL Server does optimize search arguments that are linked with or. This

description applies only to join clauses.

SQL Server can optimize selects with joins that are linked with union.

The result of or is somewhat like the result of union, except for the
treatment of duplicate rows and empty tables:

• union removes all duplicate rows (in a sort step); union all does not
remove any duplicates. The comparable query using or might
return some duplicates.

• A join with an empty table returns no rows.

SQL Server Performance and Tuning Guide 10-5

Sybase SQL Server Release 11.0.x Aggregates

For example, when SQL Server processes this query, it must look at
every row in one of the tables for each row in the other table:

select *
 from tab1, tab2
 where tab1.a = tab2.b
 or tab1.x = tab2.y

If you use union, each side of the union is optimized separately:

 select *
 from tab1, tab2
 where tab1.a = tab2.b
union all
 select *
 from tab1, tab2
 where tab1.x = tab2.y

You can use union instead of union all if you want to eliminate
duplicates, but this eliminates all duplicates. It may not be possible
to get exactly the same set of duplicates from the rewritten query.

Aggregates

SQL Server uses special optimizations for the max and min aggregates
when there is an index on the aggregated column.

For min, it reads the first value on the root page of the index.

For max, it goes directly to the end of the index to find the last row.

min and max optimizations are not applied if:

• The expression inside the max or min is anything but a column.
Compare max(numeric_col*2) and max(numeric_col)*2, where
numeric_col has a nonclustered index. The second uses max
optimization; the first performs a scan of the nonclustered index.

• The column inside the max or min is not the first column of an
index. For nonclustered indexes, it can perform a scan on the leaf
level of the index; for clustered indexes, it must perform the table
scan.

• There is another aggregate in the query.

• There is a group by clause.

In addition, the max optimization is not applied if there is a where
clause.

10-6 Transact-SQL Performance Tips

Joins and Datatypes Sybase SQL Server Release 11.0.x

If you have an optimizable max or min aggregate, you should get
much better performance by putting it in a query that is separate
from other aggregates.

For example:

select max(price), min(price)
 from titles

results in a full scan of titles, even if there is an index on colx.

Try rewriting the query as:

select max(price)
 from titles
select min(price)
 from titles

SQL Server uses the index once for each of the two queries, rather
than scanning the entire table.

Joins and Datatypes

When joining between two columns of different datatypes, one of the
columns must be converted to the type of the other. The SQL Server
Reference Manual shows the hierarchy of types. The column whose
type is lower in the hierarchy is the one that is converted.

If you are joining tables with incompatible types, one of them can use
an index, but the query optimizer cannot choose an index on the
column that it converts. For example:

select *
 from small_table, large_table
 where smalltable.float_column =
 large_table.int_column

In this case, SQL Server converts the integer column to float, because
int is lower in the hierarchy than float. It cannot use an index on
large_table.int_column, although it can use an index on
smalltable.float_column.

Null vs. Not Null Character and Binary Columns

Note that char null is really stored as varchar, and binary null is really
varbinary. Joining char not null with char null involves a conversion;
the same is true of the binary types. This affects all character and
binary types, but does not affect numeric datatypes and datetimes.

SQL Server Performance and Tuning Guide 10-7

Sybase SQL Server Release 11.0.x Joins and Datatypes

It is best to avoid datatype problems in joins by designing the schema
accordingly. Frequently joined columns should have the same
datatypes, including the acceptance of null values for character and
binary types. User-defined datatypes help enforce datatype
compatibility.

Forcing the Conversion to the Other Side of the Join

If a join between different datatypes is unavoidable, and it hurts
performance, you can force the conversion to the other side of the
join.

In the following query, varchar_column must be converted to char, so
no index on varchar_column can be used, and huge_table must be
scanned:

select *
from small_table, huge_table
where small_table.char_col =
 huge_table.varchar_col

Performance would be improved if the index on huge_table could be
used. Using the convert function on the varchar column of the small
table allows the index on the large table to be used while the small
table is table scanned:

select *
from small_table, huge_table
where convert(varchar(50),small_table.char_col) =
 huge_table.varchar_col

Be careful with numeric data. This tactic can change the meaning of
the query. This query compares integers and floating-point numbers:

select *
 from tab1, tab2
 where tab1.int_column = tab2.float_column

In this example, int_column is converted to float, and any index on
int_column cannot be used. If you insert this conversion to force the
index access to tab1:

select *
from tab1, tab2
where tab1.int_col = convert(int, tab2.float_col)

the query will not return the same results as the join without the
convert. For example, if int_column is 4, and float_column is 4.2, the
original query implicitly converts 4 to 4.0000, which does not match
4.2. The query with the convert converts 4.2 to 4, which does match.

10-8 Transact-SQL Performance Tips

Parameters and Datatypes Sybase SQL Server Release 11.0.x

It can be salvaged by adding this self-join:

and tab2.float_col = convert(int, tab2.float_col)

This assumes that all values in tab2.float_col can be converted to int.

Parameters and Datatypes

The query optimizer can use the values of parameters to stored
procedures to help determine costs.

If a parameter is not of the same type as the column in the where
clause to which it is being compared, SQL Server has to convert the
parameter.

The optimizer cannot use the value of a converted parameter.

Make sure that parameters are of the same type as the columns they
are compared to.

For example:

create proc p @x varchar(30)
as
 select *
 from tab
 where char_column = @x

may get a less optimal query plan than:

create proc p @x char(30)
as
 select *
 from tab
 where char_column = @x

Remember that char null is really varchar and binary null is really
varbinary.

SQL Server Performance and Tuning Guide 11-1

11 Locking on SQL Server 11.

Introduction

SQL Server protects the tables or data pages currently used by active
transactions by locking them. Locking is a concurrency control
mechanism: it ensures the consistency of data across transactions. It
is needed in a multi-user environment, since several users may be
working with the same data at the same time.

This chapter discusses:

• Consistency issues that arise in multiuser databases

• SQL Server options for enforcing different levels of isolation

• Locks used in SQL Server

• How different isolation levels affect SQL Server locks

• Defining an isolation level using the set transaction isolation level
command or the at isolation clause

• How the holdlock and noholdlock keywords affect locking

• Cursors and locking

• Locks used by Transact-SQL commands

• System procedures for examining locks and user processes
blocked by locks (sp_lock and sp_who)

• SQL Server’s handling of deadlocks

• Locking and performance issues

• Strategies for reducing lock contention

• Configuration options that affect locking

Overview of Locking

Consistency of data means that if multiple users repeatedly execute
a series of transactions, the results are the same each time. This
means that simultaneous retrievals and modifications of data do not
interfere with each other.

For example, assume that the transactions in Figure 11-1, T1 and T2,
are run at approximately the same time.

11-2 Locking on SQL Server

Overview of Locking Sybase SQL Server Release 11.0.x

Figure 11-1: Consistency levels in transactions

If transaction T2 runs before T1, or after T1, both executions of T2 will
return the same value. But if T2 runs in the middle of transaction T1
(after the first update), the result for transaction T2 will be different by
$100. This is known as a dirty read. By default, SQL Server prevents
this possibility by locking the data used in T1 until the transaction
finishes. Only then does it allow T2 to complete its query.

Locking is handled automatically by SQL Server and is not under
user control (with a few exceptions described later). However, you
must still know how and when to use transactions to preserve the
consistency of your data, while maintaining high performance and
throughput. Transactions are described in the Transact-SQL User’s
Guide and in the SQL Server Reference Manual.

Isolation Levels and Transactions

The SQL standard defines four levels of isolation for SQL
transactions. Each isolation level specifies the kinds of actions that
are not permitted while concurrent transactions execute. Higher
levels include the restrictions imposed by the lower levels:

T1 Event Sequence T2

begin transaction

update account
set balance = balance - 100
where acct_number = 25

update account
set balance = balance + 100
where acct_number = 45

commit transaction

T1 and T2 start

T1 updates balance
for one account by
subtracting $100

T2 queries the sum
balance for accounts
which is off by $100

T2 ends

T1 updates balance
of other account to
add the $100

T1 ends

begin transaction

select sum(balance)
from account
where acct_number < 50

commit transaction

SQL Server Performance and Tuning Guide 11-3

Sybase SQL Server Release 11.0.x Overview of Locking

• Level 0 prevents other transactions from changing data that has
already been modified (using a data modification statement such
as update) by an uncommitted transaction. The other transactions
are blocked from modifying that data until the transaction
commits. However, other transactions can still read the
uncommitted data (dirty reads). The example in Figure 11-1
shows a “dirty read.”

• Level 1 prevents dirty reads. These occur when one transaction
modifies a row and a second transaction reads that row before the
first transaction commits the change. If the first transaction rolls
back the change, the information read by the second transaction
becomes invalid.

Figure 11-2: Dirty reads in transactions

If transaction T4 queries the table after T3 updates it, but before
it rolls back the change, the amount calculated by T4 is off by
$100.

• Level 2 prevents nonrepeatable reads. These occur when one
transaction reads a row and a second transaction modifies that
row. If the second transaction commits its change, subsequent
reads by the first transaction yield results that are different from
the original read. Figure 11-3 shows a nonrepeatable read.

T3 Event Sequence T4

begin transaction

update account
set balance = balance - 100
where acct_number = 25

rollback transaction

T3 and T4 start

T3 updates balance
for one account by
subtracting $100

T4 queries the
current sum balance
for accounts

T4 ends

T3 rolls back,
invalidating the
results from T4

begin transaction

select sum(balance)
from account
where acct_number < 50

commit transaction

11-4 Locking on SQL Server

Overview of Locking Sybase SQL Server Release 11.0.x

Figure 11-3: Nonrepeatable reads in transactions

If transaction T6 modifies and commits the changes to the
account table after the first query in T5, but before the second
one, the same two queries in T5 produce different results.

• Level 3 prevents phantoms. These occur when one transaction
reads a set of rows that satisfy a search condition, and then a
second transaction modifies the data (through an insert, delete, or
update statement). If the first transaction repeats the read with the
same search conditions, it obtains a different set of rows. An
example of phantoms in transactions is shown in Figure 11-4.

T5 Event Sequence T6

begin transaction

select balance
from account
where acct_number = 25

select balance
from account
where acct_number = 25

commit transaction

T5 and T6 start

T5 queries the
balance for one
account

T6 updates the
balance for that
same account

T6 ends

T5 makes same query
as before and gets
different results

T5 ends

begin transaction

update account
set balance = balance - 100
where acct_number = 25

commit transaction

SQL Server Performance and Tuning Guide 11-5

Sybase SQL Server Release 11.0.x Overview of Locking

Figure 11-4: Phantoms in transactions

If transaction T8 inserts rows into the table that satisfy T7’s
search condition after the T7 executes the first select, subsequent
reads by T7 using the same query result in a different set of rows.

SQL Server’s default transaction isolation level is 1. You can enforce
the highest isolation level using the holdlock keyword of the select
statement. You can choose isolation levels 0, 1, or 3 using the
transaction isolation level option of the set command for your session or
using the at isolation clause of the select or readtext statement for just the
query. For information about holdlock, transaction isolation level, and at
isolation, see “How Isolation Levels Affect Locking” on page 11-13.

Granularity of Locks

The granularity of locks in a database refers to how much of the data
is locked at one time. In theory, a database server can lock as much as
the entire database or as little as a row of data. However, such
extremes affect the concurrency (number of users that can access the
data) and locking overhead (amount of work to process each lock) in
the server.

By increasing the lock size, the amount of work required to obtain a
lock becomes smaller, but large locks can degrade performance, as
more users must wait until the locks are released. By decreasing the

T7 Event Sequence T8

begin transaction

select * from account
where acct_number < 25

select * from account
where acct_number < 25

commit transaction

T7 and T8 start

T7 queries a certain
set of rows

T8 inserts a row that
meets the criteria for
the query in T7

T8 ends

T7 makes the same
query and gets a
new row

T7 ends

begin transaction

insert into account
(acct_number, balance)
values (19, 500)

commit transaction

11-6 Locking on SQL Server

Types of Locks in SQL Server Sybase SQL Server Release 11.0.x

lock size, more of the data becomes accessible to other users.
However, small locks can also degrade performance, since more
work is necessary to maintain and coordinate the increased number
of locks. To achieve optimum performance, a locking scheme must
balance the needs of concurrency and overhead.

SQL Server achieves its balance by locking only data pages or tables.
It does not lock worktables or temporary tables because, by
definition, they are always single-connection tables. These locking
mechanisms are described in the following sections.

Types of Locks in SQL Server

SQL Server handles all locking decisions. It chooses which type of
lock to use after it determines the query plan. However, the way you
write a query or transaction can affect the type of lock the server
chooses. You can also force the server to make certain locks more or
less restrictive by including the holdlock, noholdlock, or shared keywords
with your queries or by changing the transaction’s isolation level.
These options are described later in this chapter.

SQL Server has two levels of locking: page locks and table locks.
Page locks are generally less restrictive (or smaller) than table locks.
A page lock locks all of the rows on the page; table locks lock entire
tables. SQL Server attempts to use page locks as frequently as
possible to reduce the contention for data among users and to
improve concurrency.

SQL Server uses table locks to provide more efficient locking when it
determines that an entire table, or most of a table’s pages, will be
accessed by a statement. Locking strategy is directly tied to the query
plan, so the query plan can be as important for its locking strategies
as for its I/O implications. If an update or delete statement has no
useful index, it does a table scan and acquires a table lock. For
example, the following statement generates a table lock:

update account set balance = balance * 1.05

If the update or delete statement uses an index, it begins by acquiring
page locks, and only attempts to acquire a table lock if a large
number of rows are affected.

Whenever possible, SQL Server tries to satisfy requests with page
locks. However, once a statement accumulates more page locks than
the lock promotion threshold allows, SQL Server tries to issue a
table lock on that object. If it succeeds, the page locks are no longer
necessary and are released.

SQL Server Performance and Tuning Guide 11-7

Sybase SQL Server Release 11.0.x Types of Locks in SQL Server

Table locks also provide a way to avoid lock collisions at the page
level. SQL Server automatically uses table locks for some commands.

Page Locks

The following describes the different types of page locks:

• Shared locks

SQL Server applies shared locks for read operations. If a shared
lock has been applied to a data page, other transactions can also
acquire a shared lock even when the first transaction is not
finished. However, no transaction can acquire an exclusive lock
on the page until all shared locks on it are released. That is, many
transactions can simultaneously read the page, but no one can
write to it while the shared lock exists.

By default, SQL Server releases shared page locks after the scan
is complete on the page. It does not hold them until the
statement completes or until the end of its transaction.
Transactions that need an exclusive page lock wait or “block” for
the release of the shared page locks before continuing.

• Exclusive locks

SQL Server applies exclusive locks for data modification
operations. When a transaction gets an exclusive lock, other
transactions cannot acquire a lock of any kind on the page until
the exclusive lock is released at the end of its transaction. Those
other transactions wait or “block” until the exclusive lock is
released, before continuing.

• Update locks

SQL Server applies update locks during the initial portion of an
update, delete, or fetch (for cursors declared for update) operation
when the pages are being read. The update locks allow shared
locks on the page, but do not allow other update or exclusive
locks. This is an internal lock to help avoid deadlocks. Later, if
the pages need to be changed and no other shared locks exist on
the pages, the update locks are promoted to exclusive locks.

In general, read operations acquire shared locks, and write
operations acquire exclusive locks. However, SQL Server can apply
page-level exclusive and update locks only if the column used in the
search argument is part of an index.

11-8 Locking on SQL Server

Types of Locks in SQL Server Sybase SQL Server Release 11.0.x

The following examples show what kind of page locks SQL Server
uses for the respective statement (assuming that indexes are used on
the search arguments):

select balance from account Shared page lock
where acct_number = 25

insert account values(34, 500) Exclusive page lock

delete account Update page locks
where balance < 0 Exclusive page locks

update account set balance = 0 Update page lock
where acct_number = 25 Exclusive page lock

Table Locks

The following describes the types of table locks.

• Intent lock

An intent lock indicates that certain types of page-level locks are
currently held in a table. SQL Server applies an intent table lock
with each shared or exclusive page lock, so intent locks can be
either intent exclusive locks or intent shared locks. Setting an
intent lock prevents other transactions from subsequently
acquiring a shared or exclusive lock on the table that contains
that locked page. Intent locks are held as long as the concurrent
page locks are in effect.

• Shared lock

This lock is similar to the shared page lock, except that it affects
the entire table. For example, SQL Server applies shared table
locks with a select with holdlock that does not use an index, and
for the create nonclustered index statement.

• Exclusive lock

This lock is similar to the exclusive page lock, except that it
affects the entire table. For example, SQL Server applies
exclusive table locks during the create clustered index command.
update and delete statements generate exclusive table locks if their
search arguments do not reference indexed columns of the
object.

The following examples show the respective page and table locks
issued for each statement (assuming that indexes are used in their
search arguments):

SQL Server Performance and Tuning Guide 11-9

Sybase SQL Server Release 11.0.x Setting the Lock Promotion Thresholds

select balance from account Intent shared table lock
where acct_number = 25 Shared page lock

insert account values(34, 500) Intent exclusive table lock
Exclusive page lock

delete account Intent exclusive table lock
where balance < 0 Update page locks

Exclusive page locks

This next example assumes that there is no index on acct_number;
otherwise, SQL Server would attempt to issue page locks for the
statement:

update account set balance = 0 Exclusive table lock
where acct_number = 25

Demand Locks

SQL Server sets a demand lock to indicate that a transaction is next
in line to lock a table or page. Demand locks prevent any more
shared locks from being set. This avoids situations in which read
transactions acquire overlapping shared locks, which monopolize a
table or page so that a write transaction waits indefinitely for its
exclusive lock.

After waiting on several different read transactions, SQL Server
gives a demand lock to the write transaction. As soon as the existing
read transactions finish, the write transaction is allowed to proceed.
Any new read transactions must then wait for the write transaction
to finish, when its exclusive lock is released.

Demand locks are internal processes, and are not visible when using
sp_lock.

Setting the Lock Promotion Thresholds

The lock promotion thresholds set the number of page locks
permitted by a statement before SQL Server attempts to escalate to a
table lock on the object. You can set the lock promotion threshold at
the server-wide level and for individual tables.

Table locks are more efficient than page locks when SQL Server
suspects an entire table might eventually be needed. At first, SQL
Server tries to satisfy most requests with page locks. However, if
more page locks than the lock promotion threshold are required on a
table during the course of a scan session, SQL Server attempts to
escalate to a table lock instead. (A “scan session” is a single scan of a

11-10 Locking on SQL Server

Setting the Lock Promotion Thresholds Sybase SQL Server Release 11.0.x

table or index.) A table may be scanned more than once within a
single command (in the case of joins, subqueries, exists clauses, and
so on), and thus more than one scan session per table may be
associated with a single command. Since lock escalation occurs on a
per-scan session basis, the total number of page locks for a single
command can exceed the lock promotion threshold as long as no
single scan session acquires more than the lock promotion threshold
number of page locks. Locks may persist throughout a transaction,
so a transaction that includes multiple commands can accumulate a
large number of locks.

Lock promotion from page locks to table locks cannot occur if a page
lock owned by another SQL Server process conflicts with the type of
table lock that is needed. For instance, if one process holds any
exclusive page locks, no other process can promote to a table lock
until the exclusive page locks are released. When this happens, a
process can accumulate page locks in excess of the lock promotion
threshold and exhaust all available locks on SQL Server. You may
need to increase the value of the number of locks configuration
parameter so that SQL Server does not run out of locks. Each lock
requires 72 bytes of memory, so you may need to configure more
memory as well.

Figure 11-5: Lock promotion logic

The three lock promotion thresholds are:

• lock promotion HWM sets a maximum of locks on a table. The default
values is 200. When the number of locks acquired during a scan

Do not promote
to table lock.

Promote to
table lock.

Do not promote
to table lock.

Does this scan session hold
lock promotion hwm number

of page locks?

Does any other process hold
exclusive lock on object?

Yes

No

Yes

No

SQL Server Performance and Tuning Guide 11-11

Sybase SQL Server Release 11.0.x Setting the Lock Promotion Thresholds

session exceeds this number, SQL Server always attempts to
acquire a table lock.

Setting lock promotion HWM to a value greater than 200 reduces the
chance of any user acquiring a table lock on a particular table.
Setting lock promotion HWM to a value lower than 200 increases the
chances of a particular user acquiring a table lock; generally you
want to avoid table locking, although it can be useful in
situations where a particular user needs exclusive use of a table
for which there is little or no contention.

• lock promotion LWM sets a minimum number of locks allowed on a
table before SQL Server attempts to acquire a table lock. The
default value is 200. SQL Server never attempts to acquire a table
lock until the number of locks on a table is equal to the lock
promotion lwm. The lock promotion LWM must be less than or equal to
the lock promotion HWM.

Setting the lock promotion LWM to very high values decreases the
chance of a particular user transaction acquiring a table lock,
which uses more page locks for the duration of the transaction,
potentially exhausting all available locks on SQL Server. If this
situation recurs, you may need to increase number of locks.

• lock promotion pct sets the percentage of locks (based on the table
size) above which SQL Server attempts to acquire a table lock
when the number of locks is between the lock promotion HWM and
the lock promotion LWM. The default value is 100.

Setting lock promotion PCT to very low values increases the chance
of a particular user transaction acquiring a table lock. If this
situation recurs, you may need to increase number of locks.

Setting Lock Promotion Thresholds Server-Wide

The following command sets the server-wide lock promotion LWM to
100, the lock promotion HWM to 2000, and the lock promotion PCT to 50:

sp_setpglockpromote "server", null, 100, 2000, 50

In this example, SQL Server does not attempt to issue a table lock
unless the number of locks on a table is between 100 and 2000. If a
command requires more than 100 but less than 2000 locks, SQL
Server compares the number of locks to the percentage of locks on
the table. If the number is greater than the percentage, SQL Server
attempts to issue a table lock.

SQL Server calculates the percentage as:

11-12 Locking on SQL Server

Setting the Lock Promotion Thresholds Sybase SQL Server Release 11.0.x

(PCT * number of rows) / 100

The default value for lock promotion HWM (200) is likely to be
appropriate for most applications. If you have many small tables
with clustered indexes, where there is contention for data pages, you
may be able to increase concurrency for those tables by tuning lock
promotion HWM to 80 percent of number of locks.

The lock promotion thresholds are intended to maximize the
concurrency on heavily used tables. The default server-wide lock
promotion threshold setting is 200.

Setting the Lock Promotion Threshold for a Table or Database

To configure lock promotion values for an individual table or
database, initialize all three lock promotion thresholds. For example:

sp_setpglockpromote "table", titles, 100, 2000, 50

After the values are initialized, you can change any individual value.
For example, to change the lock promotion PCT only, use the following
command:

sp_setpglockpromote "table", titles, null, null, 70

To configure values for a database, use

sp_setpglockpromote "database", master, 1000,
1100, 45

Precedence of Settings

You can change the lock promotion thresholds for any user database
or an individual table. Settings for an individual table override the
database or server-wide settings; settings for a database override the
server-wide values.

Server-wide values for lock promotion are represented by the lock
promotion HWM, lock promotion LWM, and lock promotion PCT configuration
parameters. Server-wide values apply to all user tables on the server
unless the database or tables have lock promotion values configured
for them.

Dropping Database and Table Settings

To remove table or database lock promotion thresholds, use the
sp_dropglockpromote system procedure. When you drop a database’s

SQL Server Performance and Tuning Guide 11-13

Sybase SQL Server Release 11.0.x How Isolation Levels Affect Locking

lock promotion thresholds, tables that do not have lock promotion
thresholds configured will use the server-wide values. When you
drop a table’s lock promotion thresholds, SQL Server uses the
database’s lock promotion thresholds, if they have been configured,
or the server-wide values, if the lock promotion thresholds have not
been configured. You cannot drop the server-wide lock promotion
thresholds.

Using sp_sysmon While Tuning Lock Promotion Thresholds

Use the system procedure sp_sysmon to see how many times lock
promotions take place and the types of promotions they are. See
Chapter 19, “Monitoring SQL Server Performance with sp_sysmon”
and the topic “Lock Promotions” on page 19-46.

If there is a problem, look for signs of lock contention in “Granted”
and “Waited” data in the Lock Detail section of the sp_sysmon output.
(See “Lock Detail” on page 19-42 for more information.) If lock
contention is high and lock promotion is frequent, consider changing
the lock promotion thresholds for the tables involved.

Use SQL Server Monitor, a separate Sybase product, to see how
changes to the lock promotion threshold affect the system at the
object level.

How Isolation Levels Affect Locking

SQL Server supports three different isolation levels for its
transactions: 0, 1, and 3. The requirements for isolation level 2 are
included with level 3, but SQL Server does not allow you to
specifically choose level 2. You can choose which isolation level
affects all the transactions executed in your session, or you can
choose the isolation level for a specific query in a transaction.

SQL Server’s default isolation level is 1, which prevents dirty reads.
SQL Server enforces isolation level 1 by:

• Applying exclusive locks on pages or tables being changed. It
holds those locks until the end of the transaction.

• Applying shared locks on pages being searched. It releases those
locks after processing the page or table.

Using the exclusive and shared locks allows SQL Server to maintain
the consistency of the results at isolation level 1. Releasing the shared
lock after the scan moves off a page improves SQL Server’s

11-14 Locking on SQL Server

How Isolation Levels Affect Locking Sybase SQL Server Release 11.0.x

concurrency by allowing other transactions to get their exclusive
locks on the data.

For example, contrast Figure 11-6, showing a transaction executed at
isolation level 1 to the dirty read transaction in Figure 11-2.

Figure 11-6: Avoiding dirty reads in transactions

When the update statement in transaction T3 executes, SQL Server
applies an exclusive lock (a page-level lock if acct_number is indexed;
otherwise, a table-level lock) on account. The query in T4 cannot
execute (preventing the dirty read) until the exclusive lock is
released, when T3 ends with the rollback. Immediately after the query
in T4 completes and releases it shared lock, another transaction like
T3 can get its exclusive lock even before T4 ends.

The SQL standard requires a default isolation level of 3. To enforce
this level, Transact-SQL provides the option transaction isolation level
with the set statement. For example, you can make level 3 the default
isolation level for your session as follows:

set transaction isolation level 3

The transaction isolation level option also allows you to specify isolation
levels 0 and 1. If your default isolation level is 0 or 1, you can make a
query operate at level 3 by using the holdlock keyword. If your default
is level 3, you can make the query operate at level 1 using noholdlock.

T3 Event Sequence T4

begin transaction

update account
set balance = balance - 100
where acct_number = 25

rollback transaction

T3 and T4 start

T3 updates account
after getting
exclusive lock

T4 tries to get shared
lock to query account
but must wait until
T3 releases its lock

T3 ends and releases
its exclusive lock

T4 gets shared lock,
queries account, and
ends

begin transaction

select sum(balance)
from account
where acct_number < 50

commit transaction

SQL Server Performance and Tuning Guide 11-15

Sybase SQL Server Release 11.0.x How Isolation Levels Affect Locking

You can also change the isolation level for a query by using the at
isolation clause with the select or readtext statements. The options in the
at isolation clause are:

For example, the following statement queries the titles table at
isolation level 0:

select *
from titles
at isolation read uncommitted

The following sections describe how holdlock, noholdlock, isolation
level 0, and isolation level 3 affect locking. For more information
about the transaction isolation level option and the at isolation clause, see
“Transactions” in the SQL Server Reference Manual.

Using holdlock and noholdlock

The holdlock keyword, used in select and readtext statements, makes a
shared page or table lock more restrictive. It applies:

• To shared locks

• To the table or view for which it is specified

• For the duration of the statement or transaction containing the
statement

In a transaction, holdlock instructs SQL Server to hold the shared lock
that it has set until the completion of that transaction instead of
releasing the lock as soon as the required table, view, or data page is
no longer needed (whether or not the transaction has completed).
SQL Server always holds exclusive locks until the end of a
transaction.

When you use holdlock with a statement, SQL Server applies shared
page locks if the statement’s search argument references indexed
columns of the object. Otherwise, SQL Server applies a shared table
lock. The following example assumes that an index does not exist for
acct_number:

Level Option

0 read uncommitted

1 read committed

3 serializable

11-16 Locking on SQL Server

How Isolation Levels Affect Locking Sybase SQL Server Release 11.0.x

select balance Shared table lock
from account holdlock
where acct_number = 25

SQL Server’s default handling of shared locks—releasing the locks as
soon as the table or view is no longer needed—allows concurrent
access to the database even during a lengthy transaction. However, it
only enforces isolation level 1. By using the holdlock keyword, you can
selectively enforce isolation level 3, which prevents nonrepeatable
reads and phantoms. This allows you to pick the queries that require
isolation level 3 instead of making that level the default for all your
queries and reducing the concurrency of your server.

In contrast to holdlock, the noholdlock keyword prevents SQL Server
from holding any shared locks acquired during the execution of the
query, regardless of the transaction isolation level currently in effect.
noholdlock is useful in situations when your transactions require a
default isolation level of 3. If any queries in those transactions do not
need to hold its shared locks until the end of the transaction, you
should specify noholdlock with those queries to improve the
concurrency of your server.

Allowing Dirty Reads

At isolation level 0, SQL Server performs dirty read by:

• Not applying shared locks on pages or tables being searched.

• Allowing reading of pages or tables that have exclusive locks. It
still applies exclusive locks on pages or tables being changed,
which prevents other transactions from changing the data
already modified by the uncommitted transaction.

By default, a unique index is required to perform an isolation level 0
read, unless the database is read only. The index is required to re-
start the scan if an update by another process changes the query’s
result set by modifying the current row or page. You can perform
isolation level 0 reads by forcing the query to use a table scan or a
nonunique index, but these scans may be aborted if there is
significant update activity on the underlying table. For information
about forcing indexes or table scans, see “Specifying an Index for a
Query” on page 9-7.

Using the example in Figure 11-6: Avoiding dirty reads in transactions,
the update statement in transaction T3 still acquires an exclusive lock
on account. The difference with isolation level 0 as opposed to level 1
is that transaction T4 does not try to acquire a shared lock before

SQL Server Performance and Tuning Guide 11-17

Sybase SQL Server Release 11.0.x How Isolation Levels Affect Locking

querying account, so it is not blocked by T3. The opposite is also true.
If T4 begins to query accounts at isolation level 0 before T3 starts, T3
could still acquire its exclusive lock on accounts while T4’s query
executes.

Applications that can use dirty reads may see better concurrency and
reduced deadlocks when accessing the same data at a higher
isolation level. An example may be transaction T4. If it requires only
a snapshot of the current sum of account balances, which probably
changes frequently in a very active table, T4 should query the table
using isolation level 0. Other applications that require data
consistency, such as queries of deposits and withdrawals to specific
accounts in the table, should avoid using isolation level 0.

Isolation level 0 can improve performance for applications by
reducing lock contention, but can impose performance costs in two
ways:

• Dirty reads are implemented by making in-cache copies of any
dirty pages that the isolation level 0 application needs to read.

• If a dirty read is active on a row, and the data changes so that the
row moves or is deleted, the scan must be restarted, possibly
incurring additional logical and physical I/O.

The sp_sysmon system procedure reports on both these factors. See
“Dirty Read Behavior” on page 19-53.

Even if you set your isolation level to 0, some utilities still acquire
shared locks for their scans because they must maintain the database
integrity by ensuring that the correct data is read before modifying it
or verifying its consistency.

Preventing Nonrepeatable Reads and Phantoms

At isolation level 3, SQL Server also prevents nonrepeatable reads
(the restrictions imposed by level 2 are included in level 3) and
phantoms by:

• Applying exclusive locks on pages or tables being changed. It
holds those locks until the end of the transaction.

• Applying shared locks on pages or tables being searched. It holds
those locks until the end of the transaction.

Using and holding the exclusive and shared locks allows SQL Server
to maintain the consistency of the results at isolation level 3.
However, holding the shared lock until the transaction ends

11-18 Locking on SQL Server

Cursors and Locking Sybase SQL Server Release 11.0.x

decreases SQL Server’s concurrency by preventing other
transactions from getting their exclusive locks on the data.

For example, look at the earlier case of a phantom, shown in Figure
11-4,when executed at isolation level 3, as shown in Figure 11-7.

Figure 11-7: Avoiding phantoms in transactions

In transaction T7, SQL Server applies shared page locks (if an index
exists on the acct_number argument) or a shared table lock (if no
index exists) and holds those locks until the end of T7. The insert in T8
cannot get its exclusive lock until T7 releases those shared locks. If T7
is a long transaction, T8 (and other transactions) may wait for longer
periods of time using isolation level 3 instead of the other levels. As
a result, you should use level 3 only when required.

Cursors and Locking

Cursor locking methods are similar to the other locking methods for
SQL Server. For cursors declared as read only or declared without the
for update clause, SQL Server uses shared page locks on the data page
that includes the current cursor position. For cursors declared with

T7 Event Sequence T8

begin transaction

select * from
account holdlock
where acct_number < 25

select * from
account holdlock
where acct_number < 25

commit transaction

T7 and T8 start

T7 queries account
and holds acquired
shared locks

T8 tries to insert row
but must wait until
T7 releases its locks

T7 makes same query
and gets same results

T7 ends and releases
its shared locks

T8 gets its exclusive
lock, inserts new row,
and ends

begin transaction

insert into account
(acct_number, balance)
values (19, 500)

commit transaction

SQL Server Performance and Tuning Guide 11-19

Sybase SQL Server Release 11.0.x Cursors and Locking

for update, SQL Server uses update page locks by default when
scanning tables or views referenced with the for update clause of declare
cursor. If the for update list is empty, all tables and views referenced in
the from clause of the select_statement receive update locks.

SQL Server releases shared locks when the cursor position moves off
a data page. If a row of an updatable cursor is updated or deleted,
SQL Server promotes its shared (for cursors declared without the for
update clause) or update lock to an exclusive lock. Any exclusive locks
acquired by a cursor in a transaction are held until the end of that
transaction. This also applies to shared or update locks for cursors
using the holdlock keyword or isolation level 3.

The following describes the locking behavior for cursors at each
isolation level:

• At level 0, SQL Server uses no locks on any base table page that
contains a row representing a current cursor position. Cursors
acquire no read locks for their scans, so they do not block other
applications from accessing the same data. However, cursors
operating at this isolation level are not updatable, and they
require a unique index on the base table to ensure accuracy.

• At level 1, SQL Server uses a shared or update lock on base table
or index pages that contain a row representing a current cursor
position. The page remains locked until the current cursor
position moves off the page as a result of fetch statements.

• At level 3, SQL Server uses a shared or update lock on any base
table or index pages that have been read in a transaction through
the cursor. SQL Server holds the locks until the transaction ends;
it does not release the locks when the data page is no longer
needed.

If you do not set the close on endtran option, a cursor remains open past
the end of the transaction, and its current page lock remains in effect.
It could also continue to acquire locks as it fetches additional rows.

Using the shared Keyword

When declaring an updatable cursor using the for update clause, you
can tell SQL Server to use shared page locks (instead of update page
locks) in the cursor’s declare cursor statement:

declare cursor_name cursor
for select select_list
from { table_name | view_name } shared
for update [of column_name_list]

11-20 Locking on SQL Server

Cursors and Locking Sybase SQL Server Release 11.0.x

This allows other users to obtain an update lock on the table or an
underlying table of the view. You can use shared only with the declare
cursor statement.

You can use the holdlock keyword in conjunction with shared after each
table or view name, but holdlock must precede shared in the select
statement. For example:

declare authors_crsr cursor
for select au_id, au_lname, au_fname
 from authors holdlock shared
 where state != 'CA'
 for update of au_lname, au_fname

These are the effects of specifying the holdlock or shared options (of the
select statement) when defining an updatable cursor:

• If you omit both options, you can read data on the currently
fetched pages only. Other users cannot update, through a cursor
or otherwise, your currently fetched pages. Other users can
declare a cursor on the same tables you use for your cursor, but
they cannot get an update lock on your currently fetched pages.

• If you specify the shared option, you can read data on the currently
fetched pages only. Other users cannot update, through a cursor
or otherwise, your currently fetched pages. They can read the
pages.

• If you specify the holdlock option, you can read data on all pages
fetched (in a current transaction) or only the pages currently
fetched (if not in a transaction). Other users cannot update,
through a cursor or otherwise, your currently fetched pages or
pages fetched in your current transaction. Other users can declare
a cursor on the same tables you use for your cursor, but they
cannot get an update lock on your currently fetched pages or
pages fetched in your current transaction.

• If you specify both options, you can read data on all pages fetched
(in a current transaction) or only the pages currently fetched (if
not in a transaction). Other users cannot update, through a cursor
or otherwise, your currently fetched pages.

SQL Server Performance and Tuning Guide 11-21

Sybase SQL Server Release 11.0.x Summary of Lock Types

Summary of Lock Types

Table 11-1 describes the types of locks SQL Server applies for insert
and create index statements:

Table 11-2 describes the types of locks SQL Server applies for select,
delete, and update statements. It divides the select, update, and delete
statements into two groups, since the types of locks they use can vary
if the statement’s search argument references indexed columns on
the object.

Note that the above tables do not describe situations in which SQL
Server initially uses table locks (if a query requires the entire table),
or when it promotes to a table lock after reaching the lock promotion
threshold.

Table 11-1: Summary of locks for insert and create index statements

Statement Table
Lock

Page
Lock

insert IX X

create clustered index X -

create nonclustered index S -

IX = intent exclusive, S = shared, X = exclusive

Table 11-2: Summary of locks for select, update and delete statements

Indexed Not Indexed

Statement Table
Lock

Page
Lock

Table
Lock

Page
Lock

select IS S IS S

select with holdlock IS S S -

update IX U, X X -

delete IX U, X X -

IS = intent shared, IX = intent exclusive, S = shared, U = update, X = exclusive

11-22 Locking on SQL Server

Summary of Lock Types Sybase SQL Server Release 11.0.x

Example of Locking

This section describes the sequence of locks applied by SQL Server
for the two transactions in Figure 11-8.

Figure 11-8: Locking example between two transactions

The following sequence of locks assumes an index exists on the
acct_number column of the account table, a default isolation level of 1,
and 10 rows per data page (50 rows divided by 10 equals 5 data
pages):

T1 Event Sequence T2

begin transaction

update account
set balance = balance - 100
where acct_number = 25

update account
set balance = balance + 100
where acct_number = 45

commit transaction

T1 and T2 start

T1 gets exclusive lock
and updates account

T2 tries to query
account but must
wait until T1 ends

T1 keeps updating
account and gets
more exclusive locks

T1 ends and releases
its exclusive locks

T2 gets shared locks,
queries account, and
ends

begin transaction

select sum(balance)
from account
where acct_number < 50

commit transaction

SQL Server Performance and Tuning Guide 11-23

Sybase SQL Server Release 11.0.x Summary of Lock Types

If no index exists for acct_number, SQL Server applies exclusive table
locks for T1 instead of page locks:

If you add a holdlock or make isolation level 3 the default using the
transaction isolation level option for transaction T2, the lock sequence is
as follows (assuming an index exists for acct_number):

T1 Locks T2 Locks

Update lock page 1
Exclusive lock page 1
Intent exclusive table lock on account
Update lock page 5
Exclusive lock page 5
Release all locks at commit

Shared lock page 1 denied, wait for release

Shared lock page 1, release lock page 1
Intent shared table lock on account
Shared lock page 2, release lock page 2
Shared lock page 3, release lock page 3
Shared lock page 4, release lock page 4
Shared lock page 5, release lock page 5
Release intent shared table lock

T1 Locks T2 Locks

Exclusive table lock on account
Release exclusive table lock at commit

Shared lock page 1 denied, wait for release

Shared lock page 1, release lock page 1
Intent shared table lock on account
Shared lock page 2, release lock page 2
Shared lock page 3, release lock page 3
Shared lock page 4, release lock page 4
Shared lock page 5, release lock page 5
Release intent shared table lock

11-24 Locking on SQL Server

Summary of Lock Types Sybase SQL Server Release 11.0.x

If you add holdlock or make transaction isolation level 3 for T2 and no index
exists for acct_number, SQL Server applies table locks for both
transactions instead of page locks:

Observing Locks with sp_sysmon

Output from the system procedure sp_sysmon gives statistics on the
page locks, table locks, and deadlocks discussed in this chapter.

Use the statistics to determine whether the SQL Server system is
experiencing performance problems due to lock contention. For
more information about sp_sysmon and lock statistics, see Chapter 19,
“Monitoring SQL Server Performance with sp_sysmon” and the
topic “Lock Management” on page 19-40.

SQL Server Monitor, a separate Sybase product, can pinpoint where
a lock problem is.

T1 Locks T2 Locks

Update lock page 1
Exclusive lock page 1
Intent exclusive table lock on account
Update lock page 5
Exclusive lock page 5
Release all locks at commit

Shared lock page 1 denied, wait for release

Shared lock page 1
Intent shared table lock on account
Shared lock page 2
Shared lock page 3
Shared lock page 4
Shared lock page 5
Release all locks at commit

T1 Locks T2 Locks

Exclusive table lock on account
Release exclusive table lock at commit

Shared table lock denied, wait for release

Shared table lock on account
Release shared table lock at commit

SQL Server Performance and Tuning Guide 11-25

Sybase SQL Server Release 11.0.x Summary of Lock Types

Viewing Locks with sp_lock

To get a report on the locks currently being held on SQL Server, use
the system procedure sp_lock:

sp_lock

The class column will display the cursor name for locks
associated with a cursor for the current user and the cursor id
for other users.
spid locktype table_id page dbname class
---- ----------- ---------- ---- ------ ---------------
1 Ex_intent 1308531695 0 master Non cursor lock
1 Ex_page 1308531695 761 master Non cursor lock
5 Ex_intent 144003544 0 userdb Non cursor lock
5 Ex_page 144003544 509 userdb Non cursor lock
5 Ex_page 144003544 1419 userdb Non cursor lock
5 Ex_page 144003544 1420 userdb Non cursor lock
5 Ex_page 144003544 1440 userdb Non cursor lock
5 Sh_page 144003544 1440 userdb Non cursor lock
5 Sh_table 144003544 0 userdb Non cursor lock
5 Update_page 144003544 1440 userdb Non cursor lock
4 Ex_table 240003886 0 pubs2 Non cursor lock
4 Sh_intent 112003436 0 pubs2 Non cursor lock
4 Ex_intent-blk 112003436 0 pubs2 Non cursor lock

The locktype column indicates not only whether the lock is a shared
lock (“Sh” prefix), an exclusive lock (“Ex” prefix), or an “update”
lock, but also whether it is held on a table (“table” or “intent”) or on
a “page.”

A “blk” suffix indicates that this process is blocking another process
that needs to acquire a lock. As soon as the blocking process
completes, the other processes move forward. A “demand” suffix
indicates that the process will acquire an exclusive lock as soon as all
current shared locks are released.

Getting Information About Blocked Processes with sp_who

The system procedure sp_who reports on system processes. If a user’s
command is being blocked by locks held by another process:

• The status column shows “lock sleep.”

• The blk column shows the process ID of the process that holds the
lock or locks.

11-26 Locking on SQL Server

Deadlocks and Concurrency in SQL Server Sybase SQL Server Release 11.0.x

Deadlocks and Concurrency in SQL Server

Simply stated, a deadlock occurs when two user processes each have
a lock on a separate page or table and each wants to acquire a lock on
the other process’s page or table. When this happens, the first process
is waiting for the second to let go of the lock, but the second process
will not let it go until the lock on the first process’s object is released.

Figure 11-9 shows a simple deadlock example between two
processes (a deadlock often involves more than two processes).

Figure 11-9: Deadlocks in transactions

If transactions T9 and T10 execute simultaneously, and both
transactions acquire exclusive locks with their initial update
statements, they deadlock waiting for each other to release their
locks, which will not happen.

SQL Server checks for deadlocks and chooses the user whose
transaction has accumulated the least amount of CPU time as the
victim. SQL Server rolls back that user’s transaction, notifies the
application program of this action with message number 1205, and
allows the other user processes to move forward.

In a multiuser situation, each user’s application program should
check every transaction that modifies data for message 1205 if there
is any chance of deadlocking. It indicates that the user transaction
was selected as the victim of a deadlock and rolled back. The
application program must restart that transaction.

T9 Event Sequence T10

begin transaction

update savings
set balance = balance - 250
where acct_number = 25

update checking
set balance = balance + 250
where acct_number = 45

commit transaction

T9 and T10 start

T9 gets exclusive lock
for savings while T10
gets exclusive lock
for checking

T9 waits for T10 to
release its lock while
T10 waits for T9 to
release its lock;
deadlock occurs

begin transaction

update checking
set balance = balance - 75
where acct_number = 45

update savings
set balance = balance + 75
where acct_number = 25

commit transaction

SQL Server Performance and Tuning Guide 11-27

Sybase SQL Server Release 11.0.x Deadlocks and Concurrency in SQL Server

Avoiding Deadlocks

It is possible to encounter deadlocks when many long-running
transactions are executed at the same time in the same database.
Deadlocks become more common as the lock contention increases
between those transactions, which decreases concurrency. Methods
for reducing lock contention, such as avoiding table locks and not
holding shared locks, are described in “Locking and Performance of
SQL Server” on page 11-28.

Well-designed applications can minimize deadlocks by always
acquiring locks in the same order. Updates to multiple tables should
always be performed in the same order.

For example, the transactions described in Figure 11-9 could have
avoided their deadlock by updating either the savings or checking
table first in both transactions. That way, one transaction gets the
exclusive lock first and proceeds while the other transaction waits to
receive its exclusive lock on the same table when the first transaction
ends.

SQL Server also avoids deadlocks by using the following locks:

• Update page locks permit only one exclusive page lock at a time.
Other update or exclusive locks must wait until that exclusive
lock is released before accessing the page. However, update locks
affect concurrency since the net effect is that all updates on a page
happen only one at a time.

• Intent table locks act as a placeholder when shared or exclusive
page locks are acquired. They inform other transactions that need
a table lock whether or not the lock can be granted without
having SQL Server scan the page lock queue. They also help
avoid lock collisions between page level locks and table level
locks.

Delaying Deadlock Checking

SQL Server performs deadlock checking after a minimum period of
time for any process waiting for a lock to be released (sleeping).
Previous releases of SQL Server perform this deadlock check at the
time the process begins to wait for a lock. This deadlock checking is
a time-consuming overhead for applications that wait without a
deadlock.

If you expect your application to deadlock very infrequently, SQL
Server allows you to delay this deadlock checking and reduce the
overhead cost. You can specify the minimum amount of time (in

11-28 Locking on SQL Server

Locking and Performance of SQL Server Sybase SQL Server Release 11.0.x

milliseconds) a process must wait before it initiates a deadlock check
using the deadlock checking period configuration parameter. If you set
this value to 600, SQL Server initiates a deadlock check for the
waiting process after at least 600 milliseconds. For example:

sp_configure "deadlock checking period", 600

You can specify a number greater than or equal to 0 (zero) for deadlock
checking period. If you set this value to 0, SQL Server initiates the
deadlock checking at the time the process begins to wait for a lock. It
is a dynamic configuration value, so any change to it takes
immediate effect. SQL Server’s default value for deadlock checking
period is 500.

Configuring deadlock checking period to a higher value produces longer
delays before deadlocks are detected. However, since SQL Server
grants most lock requests before this time elapses, the deadlock
checking overhead is avoided for those lock requests. So, if you
expect your applications to deadlock very infrequently, you can set
deadlock checking period to a higher value and avoid the overhead of
deadlock checking for most processes. Otherwise, the default value
of 500 milliseconds should suffice.

When you set deadlock checking period to a value, a process may wait
longer than that period before SQL Server checks it for a deadlock.
This happens because SQL Server actually performs deadlock
checking for all processes at every Nth interval, where N is defined
by the deadlock checking period. If a specific process waits its designated
period of time, during which SQL Server performs a round of
deadlock checking, the process must wait until the next interval
before SQL Server performs its deadlock checking. This implies that
a process may wait anywhere from N to almost twice that value.
Information from sp_sysmon can help you tune deadlock checking
behavior. See “Deadlock Detection” on page 19-45.

Locking and Performance of SQL Server

Locking affects performance of SQL Server by limiting concurrency.
An increase in the number of simultaneous users of a server may
increase lock contention, which decreases performance. Locks affect
performance when:

• Processes wait for locks to be released

Anytime a process waits for another process to complete its
transaction and release its locks, the overall response time and
throughput is affected.

SQL Server Performance and Tuning Guide 11-29

Sybase SQL Server Release 11.0.x Locking and Performance of SQL Server

• Transactions result in frequent deadlocks

As described earlier, any deadlock causes one transaction to be
aborted, and the transaction must be restarted by the
application. This severely affects the throughput of applications.
Deadlocks cannot be completely avoided. However, redesigning
the way transactions access the data can help reduce their
frequency.

• Creating indexes locks tables

Creating a clustered index locks all users out of the table until
the index is created. Creating a nonclustered index locks out all
updates until it is created. Either way, you should create indexes
at a time when there is little activity on your server.

• Turning off delayed deadlock detection causes spinlock
contention.

Setting the deadlock checking period to 0 causes more frequent
deadlock checking. The deadlock detection process holds
spinlocks on the lock structures in memory while it looks for
deadlocks. In a high transaction production environment, do not
set this parameter to 0.

Using sp_sysmon While Reducing Lock Contention

Many of the following sections suggest changing configuration
parameters to reduce lock contention. Use sp_sysmon to determine if
lock contention is a problem, and then use it to determine how
tuning to reduce lock contention affects the system. See “Lock
Management” on page 19-40 for more information about using
sp_sysmon to view lock contention.

If lock contention is a problem, you can use SQL Server Monitor, a
separate Sybase product, to pinpoint where lock problems are.

Reducing Lock Contention

Lock contention can have a large impact on SQL Server’s throughput
and response time. You need to consider locking during database
design, and monitor locking during application design. Redesigning
the tables that have the highest lock contention may improve
performance.

For example, an update or delete statement that has no useful index on its
search arguments generates a table lock. Table locks generate more

11-30 Locking on SQL Server

Locking and Performance of SQL Server Sybase SQL Server Release 11.0.x

lock contention than page locks, since no other process can access the
table. Creating a useful index for the query allows the data
modification statement to use page locks, improving concurrent
access to the table.

If creating an index for a lengthy update or delete transaction is not
possible, you can perform the operation in a cursor, with frequent
commit transaction statements to reduce the number of page locks.

Avoiding “Hot Spots”

Hot spots occur when all updates take place on a certain page, as in
a heap table, where all inserts happen on the last page of the page
chain. For example, an unindexed history table that is updated by
everyone will always have lock contentions on the last page.

The best solution to this problem is to partition the history table.
Partitioning a heap table creates multiple page chains in the table,
and therefore multiple last pages for inserts. Concurrent inserts to
the table are less likely to block one another, since multiple last pages
are available. Partitioning provides a way to improve concurrency
for heap tables without creating separate tables for different groups
of users. See “Improving Insert Performance with Partitions” on
page 13-12 for information about partitioning tables.

Another solution for hot spots is to create a clustered index to
distribute the updates across the data pages in the table. Like
partitioning, this solution creates multiple insertion points for the
table. However, it also introduces some overhead for maintaining the
physical order of the table’s rows.

Decreasing the Number of Rows per Page

Another way to reduce contention is by decreasing the number of
rows per page in your tables and indexes. When there is more empty
space in the index and leaf pages, the chances of lock contention are
reduced. As the keys are spread out over more pages, it becomes
more likely that the page you want is not the page someone else
needs. To change the number of rows per page, adjust the fillfactor or
max_rows_per_page values of your tables and indexes.

fillfactor (defined by either sp_configure or create index) determines how
full SQL Server makes each data page when it is creating a new index
on existing data. Since fillfactor helps reduce page splits, exclusive
locks are also minimized on the index, improving performance.
However, the fillfactor value is not maintained by subsequent changes

SQL Server Performance and Tuning Guide 11-31

Sybase SQL Server Release 11.0.x Locking and Performance of SQL Server

to the data. max_rows_per_page (defined by sp_chgattribute, create index,
create table, or alter table) is similar to fillfactor, except that SQL Server
does maintain the max_rows_per_page value as the data changes.

The costs associated with decreasing the fillfactor or max_rows_per_page
values include more memory, more locks, and a higher lock
promotion threshold. In addition, decreasing the max_rows_per_page
value for a table may increase page splits when data is inserted into
the table.

Reducing Lock Contention with max_rows_per_page

The max_rows_per_page value specified in a create table, create index, or
alter table command restricts the number of rows allowed on a data
page, a clustered index leaf page, or a nonclustered index leaf page.
This reduces lock contention and improves concurrency for
frequently accessed tables.

The max_rows_per_page value applies to the data pages of an
unindexed table or the leaf pages of an index. The value of
max_rows_per_page is stored in the maxrowsperpage column of sysindexes
(this column was named rowpage in previous releases of SQL Server).

Unlike fillfactor, which is not maintained after creating a table or
index, SQL Server retains the max_rows_per_page value when adding or
deleting rows.

Low values for max_rows_per_page can cause page splits, which occur
when new data or index rows need to be added to a page where there
is not enough room for the new row. Usually, the data on the existing
page is split fairly evenly between the newly allocated page and the
existing page.

The max_rows_per_page setting affects how much space is needed for
data. The sp_estspace system procedure uses the max_rows_per_page
value when calculating storage space.

For example, the following command creates the sales table and
limits the maximum rows per page to four:

create table sales
 (stor_id char(4) not null,
 ord_num varchar(20) not null,
 date datetime not null,)
 with max_rows_per_page = 4

If you create a table with a max_rows_per_page value, and then create a
clustered index on the table without specifying max_rows_per_page, the
clustered index inherits the max_rows_per_page value from the create

11-32 Locking on SQL Server

Locking and Performance of SQL Server Sybase SQL Server Release 11.0.x

table statement. Creating a clustered index with a max_rows_per_page
specification changes the value for the table’s data pages

Indexes and max_rows_per_page

The default value for is max_rows_per_page is 0, which creates clustered
indexes with full pages, creates nonclustered indexes with full leaf
pages, and leaves a comfortable amount of space within the index B-
tree in both the clustered and nonclustered indexes.

For heap tables and clustered indexes, the range for max_rows_per_page
is 0–256.

For nonclustered indexes, the maximum value for max_rows_per_page
is the number of index rows that fit on the leaf page, but the
maximum cannot exceed 256. To determine the maximum value,
subtract 32 from the page size and divide the difference by the index
key size. The following statement calculates the maximum value of
max_rows_per_page for a nonclustered index:

select (@@pagesize - 32)/minlen
 from sysindexes
 where name = " indexname "

select into and max_rows_per_page

select into does not carry over the base table’s max_rows_per_page value,
but creates the new table with a max_rows_per_page value of 0. Use
sp_chgattribute to set the max_rows_per_page value on the target table.

Applying max_rows_per_page to Existing Data

The sp_chgattribute system procedure configures the max_rows_per_page
of a table or an index. sp_chgattribute affects all future operations; it
does not change existing pages. For example, to change the
max_rows_per_page value of the authors table to 1, enter:

sp_chgattribute authors, "max_rows_per_page", 1

There are two ways to apply a max_rows_per_page value to existing
data:

• If the table has a clustered index, drop and re-create the index
with a max_rows_per_page value.

• Use the bcp utility as follows:

- Copy out the table data.

SQL Server Performance and Tuning Guide 11-33

Sybase SQL Server Release 11.0.x Locking and Performance of SQL Server

- Truncate the table.

- Set the max_rows_per_page value with sp_chgattribute.

- Copy the data back in.

System Procedures Reporting max_rows_per_page

The system procedure sp_helpindex now reports the value of
max_rows_per_page.

For example:

sp_helpindex titles

index_name index_description index_keys index_max_rows_per_page
---------- ----------------- ---------- -----------------------
titleidind clustered, unique located

 on default title_id 40
titleind nonclustered located

on default title 0

The system procedure sp_help calls sp_helpindex.

Additional Locking Guidelines

These locking guidelines can help reduce lock contention and speed
performance:

• Never include user interaction between the beginning of a
transaction and its commit or rollback.

Since SQL Server holds some locks until the transaction ends, if a
user can hold up the commit or rollback (even for a short time),
there will be higher lock contention.

• Keep transactions short.

SQL Server releases exclusive and update locks only on commit
or rollback. The longer the transaction, the longer these locks are
held. This blocks other activity and leads to blocking and
deadlocks.

• Keep transactions in one batch.

Network interaction during a transaction can introduce
unnecessary delays in completing the transaction and releasing
its locks.

• Use the lowest level of locking required by each application, and
use isolation level 3 only when necessary.

11-34 Locking on SQL Server

Locking and Performance of SQL Server Sybase SQL Server Release 11.0.x

Updates by other transactions may be delayed until a
transaction using isolation level 3 releases any of its shared locks
at the end of the transaction. Use isolation level 3 only when
nonrepeatable reads or phantoms may interfere with your
desired results.

If only a few queries require level 3, use the holdlock keyword or
at isolation serializable clause in those queries instead of using set
transaction isolation level 3 for the entire transaction. If most queries
in the transaction require level 3, specify set transaction isolation level
3, but use noholdlock or at isolation read committed in the remaining
queries that can execute at isolation level 1.

• If you need to perform mass updates and deletes on active tables,
you can reduce blocking by performing the operation inside a
stored procedure using a cursor, with frequent commits.

• If your application needs to return a row, provide for user
interaction, and then update the row, consider using timestamps
and the tsequal function rather than holdlock.

• If you are using compliant third-party software, check the locking
model in applications carefully for concurrency problems.

Configuring SQL Server’s Lock Limit

Each lock counts toward SQL Server’s limit of total number of locks.
By default, SQL Server is configured with 5000 locks. A System
Administrator can change this limit using the sp_configure system
procedure. For example:

sp_configure number of locks, 10000

You may also need to adjust the total memory option of sp_configure,
since each lock uses 72 bytes of memory.

The number of locks required by a server can vary depending on the
number of concurrent processes and the types of actions performed
by the transactions. However, a good starting assumption is that
each concurrent process uses about 20 locks.

SQL Server Performance and Tuning Guide 12-1

12 Cursors and Performance 12.

How Cursors Can Affect Performance

Cursors are a mechanism for accessing the results of a SQL select
statement one row at a time (or several rows, if you use set cursors
rows). Since cursors use a different model from ordinary set-oriented
SQL, the way cursors use memory and hold locks has performance
implications for your applications. In particular, cursor performance
issues are:

• Locking at the page and at the table level

• Network resources

• Overhead of processing instructions

What Is a Cursor?

A cursor is a symbolic name that is associated with a select statement.
It enables you to access the results of a select statement one row at a
time.

Figure 12-1: Cursor example

You can think of a cursor as a “handle” on the result set of a select
statement. It enables you to examine and possibly manipulate one
row at a time.

A1301065096 Jines ... KY

A1095065156 Matheys ... KY

A1786065249 Ensley ... KY

A978606525 Marcello ... KY

...

Result set

Cursor with select * from authors
where state = ’KY’

Programming can:

- Examine a row

- Take an action based on row values

12-2 Cursors and Performance

How Cursors Can Affect Performance Sybase SQL Server Release 11.0.x

Set-Oriented vs. Row-Oriented Programming

SQL was not conceived as a row-oriented language—it was
conceived as a set-oriented language. SQL Server is extremely
efficient when it is working in set-oriented mode. Cursors are
required by ANSI-89 SQL standards, and when they are needed, they
are very powerful. However, they can have a negative effect on
performance.

For example, this query performs the identical action to all rows
fulfilling conditions:

update titles
 set contract = 1
where type = ’business’

The SQL Server optimizer finds the most efficient way to perform the
update. In contrast, a cursor would examine each row and perform
single updates if conditions were met. The application declares a
cursor for a select statement, opens the cursor, fetches a row,
processes it, goes to the next row, and so forth. The application may
perform quite different operations based on the values in the current
row and may be less efficient than the server’s set level operations.
However, cursors can provide more flexibility when needed, so
when you need the flexibility, use them.

Figure 12-2 shows the steps involved in using cursors. The whole
point of cursors is to get to the middle box, where the user examines
a row and decides what to do based on its values.

Figure 12-2: Cursor flowchart

Declare cursor

Open cursor

Fetch row

Process row
(Examine/Update/Delete)

No

Yes

Close cursor

Deallocate cursor

Get next
row?

SQL Server Performance and Tuning Guide 12-3

Sybase SQL Server Release 11.0.x Resources Required at Each Stage

Cursors: A Simple Example

Here is a simple example of a cursor with the “Process Rows” part in
pseudocode.

declare biz_book cursor
 for select * from titles
 where type = ’business’
go
open biz_book
go
fetch biz_book
go
/* Look at each row in turn and perform
** various tasks based on values,
** and repeat fetches, until
** there are no more rows
*/
close biz_book
go
deallocate cursor biz_book
go

Depending on the content of the row, the user might delete the
current row:

delete titles where current of biz_book

or update the current row:

update titles set title=”The Rich
 Executive’s Database Guide”
where current of biz_book

Resources Required at Each Stage

Cursors use memory and require locks on tables, data pages, and
index pages. When you declare a cursor, memory is allocated to the
cursor and to store the query plan that is generated. While the cursor
is open, SQL Server holds intent table locks and perhaps page locks.
When you fetch a row, there is a page lock on the page that stores the
row, locking out updates by other processes. If you fetch multiple
rows, there is a page lock on each page that contains a fetched row.

12-4 Cursors and Performance

Resources Required at Each Stage Sybase SQL Server Release 11.0.x

Figure 12-3: Resource use by cursor statement

The memory resource descriptions in Figure 12-3 and Table 12-1 refer
to ad hoc cursors sent using isql or Client-Library™. For other kinds
of cursors, the locks are the same, but the memory allocation and
deallocation differ somewhat according to the type of cursor, as
described in “Memory Use and Execute Cursors” on page 12-5.

Page
locks

Table
locks
(intent);
some
page
locks

Memory

Declare cursor

Open cursor

Fetch row

Process row
(Examine/Update/Delete)

No

Yes

Close cursor

Deallocate cursor

Get next
row?

SQL Server Performance and Tuning Guide 12-5

Sybase SQL Server Release 11.0.x Resources Required at Each Stage

Memory Use and Execute Cursors

The descriptions of declare cursor and deallocate cursor in Table 12-1 refer
to adhoc cursors that are sent using isql or Client-Library. Other kinds
of cursors allocate memory differently:

• For cursors that are declared on stored procedures, only a small
amount of memory is allocated at declare cursor time. Cursors
declared on stored procedures are sent using Client-Library or
the pre-compiler and are known as “execute cursors.”

• For cursors declared within a stored procedure, memory is
already available for the stored procedure, and the declare
statement does not require additional memory.

Table 12-1: Locks and memory use for isql and Client-Library client cursors

Cursor
Command Resource Use

declare cursor When you declare a cursor, SQL Server allocates memory to
the cursor and to store the query plan that is generated. The
size of the query plan depends on the select statement, but it
generally ranges from one to two pages.

open When you open a cursor,SQL Server starts processing the
select statement. The server optimizes the query, traverses
indexes, and sets up memory variables. The server does not
access rows yet, except when it needs to build worktables.
However, it does set up the required table-level locks (intent
locks) and, if there are subqueries or joins, page locks on the
outer table(s).

fetch When you execute a fetch, SQL Server sets up the required
page lock, gets the row or rows required and reads specified
values into the cursor variables, or sends the row to the
client. The page lock is held until a fetch moves the cursor off
the page or until the cursor is closed. This page lock is either
a shared page lock or an update page lock, depending on
how the cursor is written.

close When you close a cursor, SQL Server releases the shared
locks and some of the memory allocation. You can open the
cursor again, if necessary.

deallocate cursor When you deallocate a cursor, SQL Server releases the rest of
the memory resources used by the cursor. To reuse the
cursor, you must declare it again.

12-6 Cursors and Performance

Cursor Modes: Read-Only and Update Sybase SQL Server Release 11.0.x

Cursor Modes: Read-Only and Update

There are two modes of cursors: read only and update. As the names
suggest, read-only cursors can only display data from a select
statement; update cursors can be used to perform positioned
updates and deletes.

Read-only mode uses shared page locks. It is in effect if you specify
for read only or if the cursor’s select statement uses distinct, group by,
union, or aggregate functions, and in some cases, order by clauses.

Update mode uses update page locks. It is in effect if:

• You specify for update.

• The select statement does not include distinct, group by, union, a
subquery, aggregate functions, or the at isolation read uncommitted
clause.

• You specify shared.

If column_name_list is specified, only those columns are updatable.

Read-Only vs. Update

Specify the cursor mode when you declare the cursor. Note that if the
select statement includes certain options, the cursor is not updatable
even if you declare it for update.

Index Use and Requirements for Cursors

Any index can be used for read-only cursors. They should produce
the same query plan as the select statement outside of a cursor. The
index requirements for updatable cursors are rather specific, and
updatable cursors may produce different query plans.

Update cursors have these indexing requirements:

• If the cursor is not declared for update, a unique index is
preferred over a table scan or a nonunique index. But a unique
index is not required.

• If the cursor is declared for update without a for update of list, a
unique index is required. An error is raised if no unique index
exists.

• If the cursor is declared for update with a for update of list, then
only a unique index without any columns from the list can be
chosen. An error is raised if no unique index qualifies.

SQL Server Performance and Tuning Guide 12-7

Sybase SQL Server Release 11.0.x Comparing Performance With and Without Cursors

When cursors are involved, an index that contains an IDENTITY
column is considered unique, even if the index is not declared
unique.

A query that you use without a cursor, may use very different
indexes if you include it in a cursor.

Comparing Performance With and Without Cursors

This section examines the performance of a stored procedure written
two different ways:

• Without a cursor – This procedure scans the table three times,
changing the price of each book.

• With a cursor – This procedure makes only one pass through the
table.

In both examples, there is a unique index on titles(title_id).

Sample Stored Procedure: Without a Cursor

This is an example of programming without cursors.

/* Increase the prices of books in the
** titles table as follows:
**
** If current price is <= $30, increase it by 20%
** If current price is > $30 and <= $60, increase
** it by 10%
** If current price is > $60, increase it by 5%
**
** All price changes must take effect, so this is
** done in a single transaction.
*/

create procedure increase_price
as

 /* start the transaction */
 begin transaction
 /* first update prices > $60 */
 update titles
 set price = price * 1.05
 where price > $60

 /* next, prices between $30 and $60 */
 update titles

12-8 Cursors and Performance

Comparing Performance With and Without Cursors Sybase SQL Server Release 11.0.x

 set price = price * 1.10
 where price > $30 and price <= $60

 /* and finally prices <= $30 */
 update titles
 set price = price * 1.20
 where price <= $30

 /* commit the transaction */
 commit transaction

return

Sample Stored Procedure With a Cursor

This procedure performs the same changes to the underlying table,
but it uses cursors instead of set-oriented programming. As each row
is fetched, examined, and updated, a lock is held on the appropriate
data page. Also, as the comments indicate, each update commits as it
is made since there is no explicit transaction.

/* Same as previous example, this time using a
** cursor. Each update commits as it is made.
*/
create procedure increase_price_cursor
as
declare @price money

/* declare a cursor for the select from titles */
declare curs cursor for
 select price
 from titles
 for update of price

/* open the cursor */
open curs

/* fetch the first row */
fetch curs into @price

/* now loop, processing all the rows
** @@sqlstatus = 0 means successful fetch
** @@sqlstatus = 1 means error on previous fetch
** @@sqlstatus = 2 means end of result set reached
*/
while (@@sqlstatus != 2)
begin

SQL Server Performance and Tuning Guide 12-9

Sybase SQL Server Release 11.0.x Comparing Performance With and Without Cursors

 /* check for errors */
 if (@@sqlstatus = 1)
 begin
 print "Error in increase_price"
 return
 end

 /* next adjust the price according to the
 ** criteria
 */
 if @price > $60
 select @price = @price * 1.05
 else
 if @price > $30 and @price <= $60
 select @price = @price * 1.10
 else
 if @price <= $30
 select @price = @price * 1.20

 /* now, update the row */
 update titles
 set price = @price
 where current of curs

 /* fetch the next row */
 fetch curs into @price
end

/* close the cursor and return */
close curs
return

Which procedure do you think will have better performance?

Cursor vs. Non-Cursor Performance Comparison

Table 12-2 shows actual statistics gathered against a 5000-row table.
Note that the cursor code takes two and one-half times longer, even
though it scans the table only once.

Table 12-2: Sample execution times against a 5000-row table

Procedure Access Method Time

increase_price Uses three table scans 2 minutes

increase_price_cursor Uses cursor, single table scan 5 minutes

12-10 Cursors and Performance

Locking with Read-Only Cursors Sybase SQL Server Release 11.0.x

Results from tests like these can vary widely. They are most
pronounced on systems with busy networks, larger numbers of
active database users, and multiple users accessing the same table.

Cursor vs. Non-Cursor Performance Explanation

In addition to locking, cursors involve much more network activity
than set operations and incur the overhead of processing
instructions. The application program needs to communicate with
SQL Server regarding every result row of the query. This is why the
cursor code took much longer to complete than the code that
scanned the table three times.

When cursors are absolutely necessary, of course they should be
used. But they can adversely affect performance.

Cursor performance issues are:

• Locking at the page and table level

• Network resources

• Overhead of processing instructions

Use cursors only if necessary. If there is a set level programming
equivalent, it may be preferable, even if it involves multiple table
scans.

Locking with Read-Only Cursors

Here is a piece of cursor code you can use to display the locks that are
set up at each point in the life of a cursor. Execute the code in Figure
12-4, pausing to execute sp_lock where the arrows are.

SQL Server Performance and Tuning Guide 12-11

Sybase SQL Server Release 11.0.x Locking with Read-Only Cursors

Using sp_lock, examine the locks that are in place at each arrow:

Figure 12-4: Read-only cursors and locking experiment input

Table 12-3 shows the results.

If you issue another fetch command after the last row of the result set
has been fetched, the locks on the last page are released, so there will
be no cursor-related locks.

Table 12-3: Locks held on data and index pages by cursors

Event Data Page Index Page

After declare No cursor-related locks. No cursor-related locks.

After open Shared intent lock on
authors.

None.

After first fetch Shared intent lock on
authors, and shared page
lock on a page in authors.

Shared page lock on index
page, unless the query
performs a table scan.

After 100 fetches Shared intent lock on
authors and shared page
lock on a different page in
authors.

Shared page lock on index
page, very probably a
different index page.

After close No cursor-related locks. No cursor-related locks.

declare curs1 cursor for
select au_id, au_lname, au_fname
 from authors
 where au_id like ’15%’
 for read only
go
open curs1
go
fetch curs1
go
fetch curs1
go 100
close curs1
go
deallocate cursor curs1
go

12-12 Cursors and Performance

Locking with Update Cursors Sybase SQL Server Release 11.0.x

Locking with Update Cursors

The next example requires two connections to SQL Server.

Open two connections to SQL Server, and execute the commands
shown in Figure 12-5.

Figure 12-5: Update cursors and locking experiment input

Update Cursors: Experiment Results

Connection 1, which opens a cursor and fetches a row, gets an update
lock on that page, which allows shared locks but not exclusive locks
or update locks.

begin tran
go
select *
from authors
 holdlock
where au_id = au_id

fetched at left
go

sp_lock
go

delete
from authors
where au_id =
 same au_id

/* what happens? */

declare curs2 cursor for
select au_id, au_lname
from authors
where au_id like ’A1%’
for update
go
open curs2
go

fetch curs2
go

delete from authors
where current of curs2
go

/* what happens? */

close curs2
go

Connection 1 Connection 2

SQL Server Performance and Tuning Guide 12-13

Sybase SQL Server Release 11.0.x Guidelines for Using Cursors

When Connection 2 does a select with holdlock, that works because it
just needs a shared lock.

When Connection 1 (the cursor) tries to delete, it needs an exclusive
lock but cannot get it, which means it has to wait. When Connection
2 tries to delete, which requires an exclusive lock, it cannot get it
either, and deadlock occurs. Table 12-4 shows lock compatibility.

Guidelines for Using Cursors

Cursors are very powerful but can adversely affect performance. If
you use them, be aware of the locks that are set when they are open,
and leave them open as briefly as possible, particularly when you
have fetched a row.

Cursors can downgrade performance because they involve:

• An increased chance of locking at both the page level and the
table level

• Increased network traffic

• Considerable overhead of processing instructions at the server

If there is a SQL processing equivalent, it is often preferable. In many
circumstances, even SQL alternatives that require multiple scans of a
table can outperform cursors.

Optimizing Tips for Cursors

There are several optimizing tips specific to cursors:

• Optimize cursor selects using the cursor, not ad hoc queries.

• Use union or union all instead of or clauses or in lists.

• Declare the cursor’s intent.

• Specify column names in the for update clause.

• Use the shared keyword for tables.

Table 12-4: Lock compatibility

Lock Type Shared Update Exclusive

Shared Yes Yes No

Update Yes No No

Exclusive No No No

12-14 Cursors and Performance

Optimizing Tips for Cursors Sybase SQL Server Release 11.0.x

• Fetch more than one row if you are returning rows to the client.

• Keep cursors open across commits and rollbacks.

• Open multiple cursors on a single connection.

Optimize Using Cursors

A standalone select statement may be optimized very differently than
the same select statement in an implicitly or explicitly updatable
cursor. When you are developing applications that use cursors,
always check your query plans and I/O statistics using the cursor,
not a standalone select. In particular, index restrictions of updatable
cursors require very different access methods.

Use union Instead of or Clauses or in Lists

Cursors cannot use the dynamic index of row IDs generated by the
OR strategy. Queries that use the OR strategy in standalone select
statements usually table scan using read-only cursors. If they are
updatable cursors, they may need to use a unique index and still
require access to each data row in sequence in order to evaluate the
query clauses.

Read-only cursors using union create a worktable when the cursor is
declared, and sort it to remove duplicates. Fetches are performed on
the worktable. Cursors using union all can return duplicates and do
not require a worktable.

Declare the Cursor’s Intent

Always declare a cursor’s intent: read-only or updatable. This gives
you greater control over concurrency implications. If you do not
specify the intent, SQL Server decides for you, and very often it
chooses updatable cursors. Updatable cursors use update locks,
thereby preventing other update locks or exclusive locks. If the
update changes an indexed column, the optimizer may need to
choose a table scan for the query, resulting in potentially difficult
concurrency problems. Be sure to carefully examine the query plans
for queries using updatable cursors.

SQL Server Performance and Tuning Guide 12-15

Sybase SQL Server Release 11.0.x Optimizing Tips for Cursors

Specify Column Names in the for update Clause

SQL Server acquires update locks on all the tables that have columns
listed in the for update clause of the cursor select statement. If the for
update clause is not included in the cursor declaration, all the tables
referenced in the from clause acquire update locks.

This query includes the name of the column in the for update clause:

declare curs3 cursor
for
select au_lname, au_fname, price
 from titles t, authors a,
 titleauthor ta
where advance <= $1000
 and t.title_id = ta.title_id
 and a.au_id = ta.au_id
for update of price

Table 12-5 shows the effects of:

• Omitting the for update clause entirely—no shared clause

• Omitting the column name from the for update clause

• Including the name of the column to be updated in the for update
clause

• Adding shared after the name of the titles table while using for
update of price

In the table, the additional locks, or more restrictive locks for the two
versions of the for update clause are emphasized.

Table 12-5: Effects of for update clause and shared on cursor locking

Clause titles authors titleauthor

none

sh_page on data

sh_page on index

sh_page on data sh_page on data

for update updpage on index

updpage on data

updpage on index

updpage on data updpage on data

for update of
price updpage on data

sh_page on index

sh_page on data sh_page on data

for update of
price
+ shared

sh_page on data

sh_page index

sp_page data sh_page on data

12-16 Cursors and Performance

Optimizing Tips for Cursors Sybase SQL Server Release 11.0.x

Use set cursor rows

The SQL standard specifies a one-row fetch for cursors, wasting
network bandwidth. Using the set cursor rows query option and Open
Client’s transparent buffering of fetches you can increase
performance:

ct_cursor(CT_CURSOR_ROWS)

Choose the number of rows returned carefully for frequently
executed applications using cursors; tune them to the network. See
“Changing Network Packet Sizes” on page 16-3 for an explanation of
this process.

Keep Cursors Open Across Commits and Rollbacks

ANSI closes cursors at the conclusion of each transaction. Transact
SQL provides the set option close on endtran for applications that must
meet ANSI behavior. By default, however, this option is off. Unless
you must meet ANSI requirements, leave this option off in order to
maintain concurrency and throughput.

If you must be ANSI compliant, you need to decide how to handle
the effects on SQL Server. Should you perform a lot of updates or
deletes in a single transaction? Or should you follow the usual advice
to keep transactions short?

If you choose to keep transactions short, closing and opening the
cursor can affect throughput, since SQL Server needs to rematerialize
the result set each time the cursor is opened. If you choose to perform
more work in each transaction, this can cause concurrency problems,
since the query holds locks.

Open Multiple Cursors on a Single Connection

Some developers simulate cursors by using two or more connections
from DB-Library™. One connection performs a select, while the
other connection performs updates or deletes on the same tables.
This has very high potential to create “application deadlocks”:

• Connection A holds a shared lock on a page. As long as there are
rows pending from SQL Server, a shared lock is kept on the
current page.

• Connection B requests an exclusive lock on the same pages and
then waits.

SQL Server Performance and Tuning Guide 12-17

Sybase SQL Server Release 11.0.x Optimizing Tips for Cursors

• The application waits for Connection B to succeed before
invoking whatever logic is needed to remove the shared lock. But
this never happens.

Since Connection A never requests a lock that Connection B holds,
this is not a server-side deadlock.

12-18 Cursors and Performance

Optimizing Tips for Cursors Sybase SQL Server Release 11.0.x

SQL Server Performance and Tuning Guide 13-1

13 Controlling Physical Data
Placement 13.

This chapter discusses:

• General issues with data placement on devices

• Device mirroring and performance issues

• Using segments to improve performance

• Using partitions to increase insert performance on heap tables

How Object Placement Can Improve Performance

SQL Server allows you to control the placement of databases, tables,
and indexes across your physical storage devices. This can improve
performance by equalizing the reads and writes to disk across many
devices and controllers. For example, you can:

• Place a database‘s data segments on a specific device or devices,
storing the database’s log on a separate physical device. This way,
reads and writes to the database’s log do not interfere with data
access.

• Place specific tables or nonclustered indexes on specific devices.
You might place a table on one device and its nonclustered
indexes on a separate device.

• Place the text and image page chain for a table on a separate
device from the table itself. The table stores a pointer to the actual
data value in the separate database structure, so each access to a
text or image column requires at least two I/Os.

• Spread large, heavily used tables across several devices.

Multiuser systems and multi-CPU systems that perform a lot of disk
I/O need to pay special attention to physical and logical device
issues and the distribution of I/O across devices:

• Plan balanced separation of objects across logical and physical
devices.

• Use enough physical devices, including disk controllers, to
ensure physical bandwidth.

• An increased number of logical devices ensures minimal
contention for internal I/O queues.

13-2 Controlling Physical Data Placement

How Object Placement Can Improve Performance Sybase SQL Server Release 11.0.x

• create database can perform parallel I/O on up to six devices at a
time, giving a significant performance leap to the process of
creating multigigabyte databases.

Symptoms of Poor Object Placement

The following problems may indicate that your system could benefit
from attention to object placement:

• Single-user performance is all right, but response time increases
significantly when multiple processes are executed.

• Access to a mirrored disk takes twice as long as access to an
unmirrored disk.

• Query performance degrades when system table activity
increases.

• Maintenance activities seem to take a long time.

• Stored procedures seem to slow down as they create temporary
tables.

• Insert performance is poor on heavily used tables.

Underlying Problems

If you are experiencing problems due to disk contention and other
problems related to object places, check for these underlying
problems:

• Random access (I/O for data and indexes) and serial access (log
I/O) processes are using the same disks.

• Database processes and operating system processes are using the
same disks.

• Serial disk mirroring is being used because of functional
requirements.

• Database maintenance activity (logging or auditing) is taking
place on the same disks as data storage.

• tempdb activity is on the same disk as heavily used tables.

Using sp_sysmon While Changing Data Placement

Use sp_sysmon to determine whether data placement across physical
devices is causing performance problems.

SQL Server Performance and Tuning Guide 13-3

Sybase SQL Server Release 11.0.x Terminology and Concepts

Use SQL Server Monitor, a separate Sybase product, to pinpoint
where the problems are.

Check the entire sp_sysmon output during tuning to verify how the
changes affect all performance categories.

For more information about using sp_sysmon see Chapter 19,
“Monitoring SQL Server Performance with sp_sysmon.” Pay special
attention to the output associated with the discussions in “I/O
Device Contention” on page 19-20, “Inserts on Heap Tables” on page
19-25, “Last Page Locks on Heaps” on page 19-43, and “Disk I/O
Management” on page 19-66.

Terminology and Concepts

It is important to understand the distinctions between logical or
database devices, and physical devices:

• The physical disk or physical device is the actual hardware that
stores the data.

• A database device or logical device is a piece of a physical disk
that has been initialized (with the disk init command) for use by
SQL Server. A database device can be an operating system file, an
entire disk, or a disk partition. See the SQL Server installation and
configuration guide for information about specific operating
system constraints on disk and file usage.

• A segment is a named collection of database devices used by a
database. The database devices that make up a segment can be
located on separate physical devices.

Figure 13-1: Physical and logical disks

Logical device

userdev1
Physical disk

disk init name = "userdev1",
physname = "/dev/rst0" ...

13-4 Controlling Physical Data Placement

Guidelines for Improving I/O Performance Sybase SQL Server Release 11.0.x

Guidelines for Improving I/O Performance

The major guidelines for improving I/O performance in SQL Server
are:

• Spread data across disks to avoid I/O contention.

• Isolate server-wide I/O from database I/O.

• Separate data storage and log storage for frequently updated
databases.

• Keep random disk I/O away from sequential disk I/O.

• Mirror devices on separate physical disks.

Spreading Data Across Disks to Avoid I/O Contention

Spreading data storage across multiple disks and multiple disk
controllers avoids bottlenecks:

• Put databases with critical performance requirements on
separate devices. If possible, also use separate controllers from
other databases. Use segments as needed for critical tables.

• Put heavily used tables on separate disks.

• Put frequently joined tables on separate disks.

• Use segments to place tables and indexes on their own disks.

Figure 13-2: Spreading I/O across disks

Undesirable:
all processes accessing
a single disk

Desirable:
access spread
equally across
disks

SQL Server Performance and Tuning Guide 13-5

Sybase SQL Server Release 11.0.x Guidelines for Improving I/O Performance

Isolating Server-Wide I/O from Database I/O

Place system databases with heavy I/O requirements on separate
physical disks and controllers from your application databases.

Figure 13-3: Isolating database I/O from server-wide I/O

Where to Place tempdb

tempdb is automatically installed on the master device. If more space
is needed, tempdb can be expanded to other devices. If tempdb is
expected to be quite active, it should be placed on a disk that is not
used for other important database activity. Use the fastest disk
available for tempdb. It is a heavily used database that affects all
processes on the server.

On some UNIX systems, I/O to operating system files is significantly
faster than I/O to raw devices. Since tempdb is always re-created
rather than recovered after a shutdown, you may be able to improve
performance by altering tempdb onto an operating system file instead
of a raw device. You should test this on your own system.

➤ Note
Using operating system files for user data devices is not recommended on

UNIX systems, since these systems buffer I/O in the operating system.

Databases placed on operating system files may not be recoverable after a

system crash.

See Chapter 14, “tempdb Performance Issues,” for more placement
issues and performance tips for tempdb.

Undesirable:

Desirable:

sybsecurity

Application
databases

Application
databasessybsecurity

master

master

tempdb tempdb

tempdb

13-6 Controlling Physical Data Placement

Guidelines for Improving I/O Performance Sybase SQL Server Release 11.0.x

Where to Place sybsecurity

If you use auditing on your SQL Server, the auditing system
performs frequent I/O to the sysaudits table in the sybsecurity
database. If your applications perform a significant amount of
auditing, place sybsecurity on a disk that is not used for tables where
fast response time is critical. Placing sybsecurity on its own device is
optimal.

Also, use the threshold manager to monitor its free space to avoid
suspending user transactions if the database fills up.

Keeping Transaction Logs on a Separate Disk

Placing the transaction log on the same device as the data itself is
such a common but dangerous reliability problem that both create
database and alter database require the use of the with override option if
you attempt to put the transaction log on the same device as the data
itself. Placing the log on a separate segment:

• Limits log size, which keeps it from competing with other objects
for disk space

• Allows use of threshold management techniques to prevent the
log from filling up and to automate transaction log dumps

• Improves performance, if the log is placed is on separate physical
disk

• Ensures full recovery in the event of hard disk crashes on the data
device, if the log is placed on a separate physical disk

Figure 13-4: Placing log and data on separate physical disks

device1
data

device2

Disk 1

Disk 2

pubtune

log

SQL Server Performance and Tuning Guide 13-7

Sybase SQL Server Release 11.0.x Guidelines for Improving I/O Performance

The log device can perform significant I/O on systems with heavy
update activity. SQL Server writes log records to syslogs when
transactions commit and may need to read log pages into memory
for deferred updates or transaction rollbacks.

If your log and data are on the same database devices, the extents
allocated to store log pages are not contiguous; log extents and data
extents are mixed. When the log is on its own device, the extents tend
to be allocated sequentially, reducing disk head travel and seeks,
thereby maintaining a higher I/O rate.

Figure 13-5: Disk I/O for the transaction log

If you have created a database without its log on a separate device,
see “Moving the Transaction Log to Another Device” on page 14-9 of
the System Administration Guide for information about moving the
log.

Mirroring a Device on a Separate Disk

If you mirror data, put the mirror on a separate physical disk from
the device that it mirrors. Disk hardware failure often results in
whole physical disks being lost or unavailable. Do not mirror a
database device to another portion of the same physical disk.

Data and log on
separate device

Data and log on same
device

13-8 Controlling Physical Data Placement

Guidelines for Improving I/O Performance Sybase SQL Server Release 11.0.x

Figure 13-6: Mirroring data to separate physical disks

Mirror on separate disks to minimize performance impact of
mirroring.

Device Mirroring Performance Issues

Mirroring is a security and high availability feature that allows SQL
Server to duplicate the contents of an entire database device. See
Chapter 7, “Mirroring Database Devices,” in the System
Administration Guide for more information on mirroring.

Mirroring is not a performance feature. It can slow the time taken to
complete disk writes, since writes go to both disks, either serially or
simultaneously. Reads always come from the primary side. Disk
mirroring has no effect on the time required to read data.

Figure 13-7: Impact of mirroring on write performance

Mirrored devices use one of two modes for disk writes:

• Noserial mode can increase the time required to write data. Both
writes are started at the same time, and SQL Server waits for both
to complete. The time to complete noserial writes is max(W1 ,W2).

device1

device2

device1

device2

Mirror

Mirror

Undesirable Desirable

data_dev1
Unmirrored Mirrored

data_dev1

disk1 disk1 disk2

SQL Server Performance and Tuning Guide 13-9

Sybase SQL Server Release 11.0.x Creating Objects on Segments

• Serial mode increases the time to required write data even more
than noserial mode. SQL Server starts the first write, and waits
for it to complete before initiating the second write. The time
required is W1+W2.

Why Use Serial Mode?

Despite its performance impact, serial mode is an important aspect
for reliability. In fact, serial mode is the default, because it guards
against failures that occur while a write is taking place. Since serial
mode waits until the first write is complete before starting the second
write, it is impossible for a single failure to affect both disks.
Specifying noserial mode improves performance, but you risk losing
data if a failure occurs that affects both writes.

◆ WARNING!
Unless you are sure that your mirrored database system does not
need to be absolutely reliable, do not use noserial mode.

Creating Objects on Segments

Segments are named subsets of the database devices that are
available to a given database. A segment is best described as a label
that points to one or more database devices. Each database can use
up to 32 segments, including the 3 that are created by the system
(system, logsegment, and default) when the database is created.
Segments label space on one or more logical devices.

Figure 13-8: Segments labeling portions of disks

Tables and indexes are stored on segments. If no segment is named in
the create table or create index statement, then the objects are stored on
the default segment for the database. The sp_placeobject system
procedure can be used to designate the segment to be used for
subsequent disk writes. In this way, tables can span multiple
segments.

data_dev1 data_dev2

seg1 of salesdb seg2 of salesdb

13-10 Controlling Physical Data Placement

Creating Objects on Segments Sybase SQL Server Release 11.0.x

A System Administrator must initialize the device with disk init, and
the disk must be allocated to the database by the System
Administrator or the database owner with create database or alter
database.

Once the devices are available to the database, the database owner or
object owners can create segments and place objects on the devices.

If you create a user-defined segment, you can place tables or indexes
on that segment with the create table and create index commands:

create table tableA(...) on seg1

create nonclustered index myix on tableB(...)
 on seg2

By controlling their location, you can arrange for active tables and
indexes to be spread across disks.

Why Use Segments?

Segments can improve throughput by:

• Splitting large tables across disks

• Separating tables and their nonclustered indexes across disks

• Placing the text and image page chain on a separate disk from the
table itself where the pointers to the text values are stored

In addition, segments can control space usage:

• A table can never grow larger than its segment allocation; you can
use segments to limit table size.

• Tables on other segments cannot impinge on the space allocated
to objects on another segment.

• The threshold manager can monitor space usage.

Separating Tables and Indexes

Use segments to isolate tables on one set of disks and nonclustered
indexes on another set of disks. By definition, the leaf level of a
clustered index is the table data. When you create a clustered index
using the on segment_name clause, the entire table moves to the
specified segment, and the clustered index tree is built there. You
cannot separate the clustered index from the data pages.

SQL Server Performance and Tuning Guide 13-11

Sybase SQL Server Release 11.0.x Creating Objects on Segments

You can achieve performance improvements by placing
nonclustered indexes on a separate segment.

Figure 13-9: Separating a table and its nonclustered indexes

Splitting a Large Table Across Devices

Segments can span multiple devices, so they can be used to spread
data across one or more disks. For large, extremely busy tables, this
can help balance the I/O load.

Figure 13-10: Splitting a large table across devices with segments

See “Splitting Tables” on page 16-5 in the System Administration Guide
for more information.

Moving Text Storage to a Separate Device

When a table includes a text or image datatype, the table itself stores
a pointer to the text or image value. The actual text or image data is
stored on a separate linked list of pages. Writing or reading a text
value requires at least two disk accesses, one to read or write the
pointer and subsequent reads or writes for the text values. If your
application frequently reads or writes these values, you can improve
performance by placing the text chain on a separate physical device.

device1 device 2

disk1 disk2

Table indexes

segment2

Nonclustered

segment1

Disk1 Disk2

TableA

segment1 segment2

segment3

13-12 Controlling Physical Data Placement

Improving Insert Performance with Partitions Sybase SQL Server Release 11.0.x

Isolate text and image chains to disks that are not busy with other
application-related table or index access.

Figure 13-11: Placing the text chain on a separate segment

When you create a table with a text or image column, SQL Server
creates a row for the text chain in sysindexes. The value in the name
column is the table name prefixed with a “t”; the indid is always 255.
Note that if you have multiple text or image columns in a single table,
there is only one text chain. By default, the text chain is placed on the
same segment with the table.

You can use sp_placeobject to move all future allocations for the text
columns to a separate segment. See “Placing Text Pages on a Separate
Device” on page 16-15 for more information.

Improving Insert Performance with Partitions

Partitioning a heap table creates multiple page chains for the table.
This improves the performance of concurrent inserts to the table by
reducing contention for the last page of a page chain. Partitioning
also makes it possible to distribute a table’s I/O over multiple
database devices.

You can partition only tables that do not have clustered indexes
(heap tables). See “Selecting Tables to Partition” on page 13-16 for
additional restrictions.

Page Contention for Inserts

By default, SQL Server stores a table’s data in one double-linked set
of pages called a page chain. If the table does not have a clustered
index, SQL Server makes all inserts to the table in the last page of the
page chain. When a transaction inserts a row into a table, SQL Server
holds an exclusive page lock on the last page while it inserts the row.

Device1 Device2

segment1 (data) segment2 (text chain)

SQL Server Performance and Tuning Guide 13-13

Sybase SQL Server Release 11.0.x Improving Insert Performance with Partitions

If the current last page becomes full, SQL Server allocates and links a
new last page.

The single page chain model works well for tables that have modest
insert activity. However, as multiple transactions attempt to insert
data into the table at the same time, performance problems can occur.
Only one transaction at a time can obtain an exclusive lock on the last
page, so other concurrent insert transactions block, as shown in
Figure 13-12.

Figure 13-12: Page contention during inserts

How Partitions Address Page Contention

A partition is another term for a page chain. Partitioning a table
creates multiple page chains (partitions) for the table and, therefore,
multiple last pages for insert operations. A partitioned table has as
many page chains and last pages as it has partitions.

When a transaction inserts data into a partitioned table, SQL Server
randomly assigns the transaction to one of the table’s partitions (as
discussed under “alter table Syntax” on page 13-17). Concurrent
inserts are less likely to block, since multiple last pages are available
for inserts.

Figure 13-13 shows an example of insert activity in a table with three
partitions. Compare this to Figure 13-12, which shows insert activity
in a table with a single page chain.

Table with single page chain
Transaction A holds exclusive
lock on last page

Other inserts
block until
transaction A
releases lock

13-14 Controlling Physical Data Placement

Improving Insert Performance with Partitions Sybase SQL Server Release 11.0.x

Figure 13-13: Addressing page contention with partitions

How Partitions Address I/O Contention

Partitioning a table can improve I/O contention when SQL Server
writes information in the cache to disk. If a table’s segment spans
several physical disks, SQL Server distributes the table’s partitions
across those disks when you create the partitions. When SQL Server
flushes pages to disk, I/Os assigned to different physical disks can
occur in parallel. See “Speed of Recovery” on page 15-34 for
information about when pages are flushed to disk.

To improve I/O performance for partitioned tables, you must ensure
that the segment containing the partitioned table is composed of
multiple physical devices. Figure 13-14 illustrates the difference
between reducing only page contention and reducing both page and
I/O contention.

Case 1 reduces page contention, since Table A contains four
partitions (and four insertion points). However, I/O performance is
not improved, since all I/Os are directed to the same physical disk.

Case 2 reduces I/O contention as well as page contention. Table A
and its four partitions reside on a segment that spans two physical
disks. Fewer inserts compete for I/O resources, since I/O is
distributed over two physical disks.

Table with 3 partitions
Insert A locks last page of first
partition

Insert C locks last page of
second partition

Insert B locks last page of third
partition

Fewer transactions block

SQL Server Performance and Tuning Guide 13-15

Sybase SQL Server Release 11.0.x Partitioning and Unpartitioning Tables

Figure 13-14: Addressing I/O contention with partitions

Read, Update, and Delete Performance

When data in a large table is split over multiple physical devices, it is
more likely that small, simultaneous reads, updates, and deletes will
take place on separate disks. Because SQL Server distributes a table’s
partitions over the devices in the table’s segment, partitioning large,
heavily used tables can improve the overall performance for these
statements in those tables. The actual performance benefit depends
on many factors, including the number of disk controllers, the
hardware platform, and the operating system.

In general, read, update, and delete performance is most improved
when a table’s data is evenly distributed over physical devices.
Therefore, if you are partitioning a table to improve the performance
of these statements, partition the table before inserting its data. This
enables SQL Server to randomly assign inserts to partitions, which
helps distribute the data over physical devices in the segment. If you
populate a table with data before partitioning it, most of the data
remains in the first partition (and the first few physical devices)
while other partitions and devices store less data.

Partitioning and Unpartitioning Tables

The following sections explain how to decide which tables to
partition and how to use the partition and unpartition clauses of the alter
table command.

Case 1:

I/O performance not addressed

Table segment A Table segment A

Case 2:

Better I/O performance

Insert

transactions

insert

transactions

13-16 Controlling Physical Data Placement

Partitioning and Unpartitioning Tables Sybase SQL Server Release 11.0.x

Selecting Tables to Partition

Heap tables that have large amounts of concurrent insert activity will
benefit from partitioning. Partitioning can also reduce I/O
contention for certain tables, as discussed under “How Partitions
Address I/O Contention” on page 13-14.

You can partition tables that contain data or tables that are empty. For
best performance, partition a table before inserting data.

Partitioned tables require slightly more disk space than
unpartitioned tables, since SQL Server reserves a dedicated control
page for each partition. If you create 30 partitions for a table, SQL
Server immediately allocates 30 control pages for the table, which
cannot be used for storing data.

Restrictions

You cannot partition the following kinds of tables:

• Tables with clustered indexes

• SQL Server system tables

• Tables that are already partitioned

Also, once you have partitioned a table, you cannot use any of the
following Transact-SQL commands on the table until you
unpartition it:

• create clustered index

• drop table

• sp_placeobject

• truncate table

• alter table table_name partition n

Restrictions for text and image Datatypes

You can partition tables that use the text or image datatypes.
However, the text and image columns themselves are not
partitioned—they remain on a single page chain. See “text and image
Datatypes” in the SQL Server Reference Manual for more information
about these datatypes.

SQL Server Performance and Tuning Guide 13-17

Sybase SQL Server Release 11.0.x Partitioning and Unpartitioning Tables

Cursors and Partitioned Tables

Prior to release 11.0, all of a heap’s data was inserted at the end of a
single page chain. This meant that a cursor scan of a heap table could
read all data up to and including the final insertion made to that
table, even if insertions took place after the cursor scan started.

With release 11.0, data can be inserted into one of many page chains
of a partitioned table. The physical insertion point may be before or
after the current position of a cursor scan. This means that a cursor
scan against a partitioned table is not guaranteed to scan the final
inserts made to that table; the physical location of the insert is
unknown.

If your cursor operations require all inserts to be made at the end of
a single page chain, do not partition the table used in the cursor scan.

Partitioning Tables

The three basic steps for partitioning a table are:

1. Create the segment (with its associated database devices)

2. Create the table on the segment

3. Partition the table using the alter table command’s partition clause

It is important to plan the number of devices for the table’s segment
if you want to improve I/O performance. For best performance, use
dedicated physical disks, rather than portions of disks, as database
devices. Also make sure that no other objects share the devices with
the partitioned table. See Chapter 16, “Creating and Using
Segments,” in the System Administration Guide for guidelines for
creating segments.

After you have created the segment, create the new table on the
segment using the create table...on segment_name command. This creates
a table with a single page chain. Once the table exists on the segment,
you can create additional page chains using the alter table command
with the partition clause.

alter table Syntax

The syntax for using the partition clause to alter table is:

alter table table_name partition n

where table_name is the name of the table and n is the number of
partitions (page chains) to create.

13-18 Controlling Physical Data Placement

Partitioning and Unpartitioning Tables Sybase SQL Server Release 11.0.x

➤ Note
You cannot include the alter table...partition command in a user-defined

transaction.

For example, enter the following command to create 10 partitions in
a table named historytab:

alter table historytab partition 10

SQL Server creates the specified number of partitions in the table and
automatically distributes those partitions over the database devices
in the table’s segment. SQL Server assigns partitions to devices so
that they are distributed evenly across the segment. Table 13-1
illustrates how SQL Server assigns 5 partitions to 3, 5, and 12 devices,
respectively.

Any data that was in the table before invoking alter table remains in
the first partition. Partitioning a table does not move the table’s data.
If a partition runs out of space on the device to which it is assigned,
it will try to allocate space from any device in the table’s segment.
This behavior is called page stealing.

After you partition the table, SQL Server randomly assigns each
insert transaction (including internal transactions) to one of the
table’s partitions. Once a transaction is assigned to a partition, all
insert statements within that transaction go to the same partition.
You cannot assign transactions to specific partitions.

SQL Server manages partitioned tables transparently to users and
applications. Partitioned tables appear to have a single page chain
when queried or when viewed with most utilities. The dbcc checktable
and dbcc checkdb commands list the number of data pages in each

Table 13-1: Assigning partitions to segments

Partition ID
Device (D) Assignments for Segment With

3 Devices 5 Devices 12 Devices

Partition 1 D1 D1 D1, D6, D11

Partition 2 D2 D2 D2, D7, D12

Partition 3 D3 D3 D3, D8, D11

Partition 4 D1 D4 D4, D9, D12

Partition 5 D2 D5 D5, D10, D11

SQL Server Performance and Tuning Guide 13-19

Sybase SQL Server Release 11.0.x Partitioning and Unpartitioning Tables

partition. See Chapter 17, “Checking Database Consistency,” in the
System Administration Guide for information about dbcc.

Effects on System Tables

For an unpartitioned table with no clustered index, SQL Server stores
a pointer to the last page of the page chain in the root column of the
sysindexes row for that table. (The indid value for such a row is 0.)

When you partition a table, the root value for that table becomes
obsolete. SQL Server inserts a row into the syspartitions table for each
partition, and allocates a control page and first page for each
partition. Each row in syspartitions identifies a unique partition,
along with the location of its first page, control page, and other status
information. A partition’s control page functions like the
sysindexes.root value did for the unpartitioned table—it keeps track of
the last page in the page chain.

➤ Note
Partitioning or unpartitioning a table does not affect the sysindexes rows for

that table’s nonclustered indexes. (The indid values for these rows are

greater than 1.) root values for the table’s nonclustered indexes still point to

the root page of each index, since the indexes themselves are not

partitioned.

See “sysindexes” and “syspartitions” in the SQL Server Reference
Supplement for more details about these system tables.

Getting Information About Partitions

To display information about a table’s partitions, first use the
database in which the table resides. Then enter the sp_help or
sp_helpartition stored procedure with the table’s name. The syntax of
sp_helpartition is:

sp_helpartition table_name

where table_name is the name of the table to examine. For example:

sp_helpartition titles

13-20 Controlling Physical Data Placement

Partitioning and Unpartitioning Tables Sybase SQL Server Release 11.0.x

partitionid firstpage controlpage
----------- ------------ -----------

1 145 146
2 1025 1026
3 2049 2050
4 312 313
5 1032 1033
6 2056 2057
7 376 377

sp_helpartition displays the partition number, first page number, and
control page number for each partition in the specified table. See
“Effects on System Tables” on page 13-19 for information about the
control page. sp_help displays this same partition information when
you specify the table’s name with the procedure.

dbcc checktable and dbcc checkdb

The dbcc checktable and dbcc checkdb commands show the number of
data pages in each of a table’s partitions. See Chapter 17, “Checking
Database Consistency,” in the System Administration Guide for
information about dbcc.

Unpartitioning Tables

Unpartitioning a table concatenates the table’s multiple partitions
into a single partition (page chain). Unpartitioning a table does not
move the table’s data.

To unpartition a table, use the alter table command with the unpartition
clause. The syntax is:

alter table table_name unpartition

where table_name is the name of the partitioned table.

SQL Server joins the previous and next pointers of the multiple
partitions to create a single page chain. It removes all entries for the
table from syspartitions and deallocates all control pages. The new
last page of the single partition is then stored and maintained in the
root column of sysindexes.

For example, to unpartition a table named historytab, enter the
command:

alter table historytab unpartition

SQL Server Performance and Tuning Guide 13-21

Sybase SQL Server Release 11.0.x Partitioning and Unpartitioning Tables

Changing the Number of Partitions

To change the number of partitions in a table, first unpartition the
table using alter table with the unpartition clause (see “Unpartitioning
Tables” on page 13-20). Then re-invoke alter table with the partition
clause to specify the new number of partitions. This does not move
the existing data in the table.

You cannot use the partition clause with a table that is already
partitioned.

For example, if a table named historytab contains 10 partitions, and
you want the table to have 20 partitions instead, enter the
commands:

alter table historytab unpartition
alter table historytab partition 20

Partition Configuration Parameters

The default SQL Server configuration works well for most servers
that use partitioned tables. If you require very large numbers of
partitions, you may want to change the default values for the partition
groups and partition spinlock ratio configuration parameters. See Chapter
11, “Setting Configuration Parameters,” in the System Administration
Guide for more information.

13-22 Controlling Physical Data Placement

Partitioning and Unpartitioning Tables Sybase SQL Server Release 11.0.x

SQL Server Performance and Tuning Guide 14-1

14 tempdb Performance Issues 14.

What Is tempdb?

tempdb is a database that is used by all users of SQL Server. Anyone
can create objects in tempdb. Many processes use it silently. It is a
server-wide resource that is used primarily for:

• Internal processing of sorts, creating worktables, reformatting,
and so on

• Storing temporary tables and indexes created by users

Many applications use stored procedures that create tables in tempdb
to expedite complex joins or to perform other complex data analysis
that is not easily performed in a single step.

How Can tempdb Affect Performance?

Good management of tempdb is critical to the overall performance of
SQL Server. tempdb cannot be overlooked or left in a default state. It
is the most dynamic database on many servers, and should receive
special attention.

If planned for in advance, most problems related to tempdb can be
avoided. These are the kinds of things that can go wrong if tempdb is
not sized or placed properly:

• tempdb fills up frequently, generating error messages to users who
must resubmit their queries when space becomes available.

• Sorting is slow, and users do not understand why their queries
have such uneven performance.

• User queries are temporarily locked from creating temporary
tables because of locks on system tables.

• Heavy use of tempdb objects flushes other pages out of the data
cache.

Main Solution Areas for tempdb Performance

These main areas can be addressed easily:

• Sizing tempdb correctly for all SQL Server activity

• Placing tempdb optimally to minimize contention

14-2 tempdb Performance Issues

Types and Use of Temporary Tables Sybase SQL Server Release 11.0.x

• Binding tempdb to its own data cache

• Minimizing the locking of resources within tempdb

Types and Use of Temporary Tables

The use or misuse of user-defined temporary tables can greatly affect
the overall performance of SQL Server and your applications.

Temporary tables can be quite useful, often reducing the work the
server has to do. However, temporary tables can add to the size
requirement of tempdb. Some temporary tables are truly temporary,
and others are permanent.

tempdb is used for three types of tables:

• Truly temporary tables

• Regular user tables

• Worktables

Truly Temporary Tables

You can create truly temporary tables by using “#” as the first
character of the table name:

create table #temptable (...)

or:

select select_list
 into #temptable ...

Temporary tables:

• Exist only for the duration of the user session or for the scope of
the procedure that creates them

• Cannot be shared between user connections

• Are automatically dropped at the end of the session or procedure
(or can be dropped manually)

When you create indexes on temporary tables, the indexes are stored
in tempdb:

create index tempix on #temptable(col1)

SQL Server Performance and Tuning Guide 14-3

Sybase SQL Server Release 11.0.x Initial Allocation of tempdb

Regular User Tables

You can create regular user tables in tempdb by specifying the
database name in the command that creates the table:

create table tempdb..temptable

or:

select select_list
 into tempdb..temptable

Regular user tables in tempdb:

• Can span sessions

• Can be used by bulk copy operations

• Can be shared by granting permissions on them

• Must be explicitly dropped by the owner (or are removed when
SQL Server is restarted)

You can create indexes in tempdb on permanent temporary tables:

create index tempix on tempdb..temptable(col1)

Worktables

Worktables are created in tempdb by SQL Server for sorts and other
internal server processes. These tables:

• Are never shared

• Disappear as soon as the command completes

Initial Allocation of tempdb

When you install SQL Server, tempdb is 2MB, and is located
completely on the master device. This is typically the first database
that a System Administrator needs to alter. The more users on the
server, the larger it needs to be. It can be altered onto the master
device or other devices. Depending on your needs, you may want to
stripe tempdb across several devices.

14-4 tempdb Performance Issues

Sizing tempdb Sybase SQL Server Release 11.0.x

Figure 14-1: tempdb default allocation

Use sp_helpdb to see the size and status of tempdb. The following
example shows tempdb defaults at installation time:

1> sp_helpdb tempdb

name db_size owner dbid created status
--------- -------- ------ ------ ----------- --------------------
tempdb 2.0 MB sa 2 May 22, 1995 select into/bulkcopy

device_frag size usage free kbytes
------------ -------- ------------ ---------
master 2.0 MB data and log 1248

Sizing tempdb

tempdb needs to be big enough to handle the following processes for
every concurrent SQL Server user:

• Internal sorts

• Other internal worktables that are created for distinct, group by, and
order by, for reformatting and for the OR strategy

• Temporary tables (those created with “#” as the first character of
their names)

• Indexes on temporary tables

• Regular user tables in tempdb

• Procedures built by dynamic SQL

Some applications may perform better if you use temporary tables to
split up multi-table joins. This strategy is often used for:

• Cases where the optimizer does not choose a good query plan for
a query that joins more than four tables

• Queries that exceed the 16-table join limit

• Very complex queries

d_master

tempdb

(2MB)
data and log

SQL Server Performance and Tuning Guide 14-5

Sybase SQL Server Release 11.0.x Sizing tempdb

• Applications that need to filter data as an intermediate step

You might also use tempdb to:

• Denormalize several tables into a few temporary tables

• Normalize a denormalized table in order to do aggregate
processing

Information for Sizing tempdb

To estimate the correct size for tempdb, you need the following
information:

• Maximum number of concurrent user processes (an application
may require more than one process)

• Size of sorts, as reported by set statistics io writes, for queries with
order by clauses that are not supported by an index

• Size of worktables, as reported by set statistics io writes, for
reformatting, group by, distinct, and the OR strategy (but not for
sorts)

• Number of steps in the query plans for reformatting, group by, and
so on, which indicates the number of temporary tables created

• Number of local and remote stored procedures and/or user
sessions that create temporary tables and indexes

• Size of temporary tables and indexes, as reported by statistics io

• Number of temporary tables and indexes created per stored
procedure

Sizing Formula

The 25 percent padding in the calculations below covers other
undocumented server uses of tempdb and covers the errors in our
estimates.

14-6 tempdb Performance Issues

Sizing tempdb Sybase SQL Server Release 11.0.x

1. Compute the size required for usual processing:

2. Compute the size required for temporary tables and indexes:

3. Add the two totals, and add 25 percent for padding:

Sorts Users * Sort_size

Other Users * Worktable_size +

Subtotal =

* # of query
plan steps

Total for usual processing =

Temporary
tables

Procs* Table_size *
Table_number

Indexes Procs * Index_size *
Index_number

+

Total for temporary objects =

Processing

Temp tables +

Estimate =

* 1.25

Final estimate =

SQL Server Performance and Tuning Guide 14-7

Sybase SQL Server Release 11.0.x Placing tempdb

Example of tempdb Sizing

1. Processing requirements:

2. Temporary table/index requirements:

3. Add the two totals, and add 25 percent for padding:

Placing tempdb

Keep tempdb on separate physical disks from your critical application
databases at all costs. Use the fastest disks available. If your platform
supports solid state devices and your tempdb use is a bottleneck for
your applications, use them.

These are the principles to apply when deciding where to place
tempdb. Note that the pages in tempdb should be as contiguous as
possible because of its dynamic nature.

• Expand tempdb on the same device as the master database. If the
original logical device is completely full, you can initialize
another database (logical) device on the same physical device,

Sorts 55 users * 15 pages = 825 pages

Other 55 users * 9 pages = 495 pages

Subtotal = 1320 pages

* 3 steps

Total for usual processing 3960 pages or 8.2MB

Temporary
tables

190 procs * 10 pages * 4
tables =

7600 pages

Indexes 190 procs * 2 pages * 5
indexes =

 190 pages

Total for temporary objects 7790 pages, or 16MB

Processing 8.2MB

Temp tables + 16MB

Estimate = 24.2MB

* *1.25

Final estimate = 30MB

14-8 tempdb Performance Issues

Dropping the master Device from tempdb Segments Sybase SQL Server Release 11.0.x

provided there is space. This choice does not help improve
performance by spreading I/O across devices.

• Expand tempdb on another device, but not one that is used by a
critical application. This option can help improve performance.

• Remember that logical devices are mirrored, not databases. If you
mirror the master device, you create a mirror of all portions of the
databases that reside on the master device. If the mirror uses serial
writes, this can have a serious performance impact if your tempdb
database is heavily used.

• Drop the master device from the default and logsegment segments.

Dropping the master Device from tempdb Segments

By default, the system, default, and logsegment segments for tempdb all
include its 2MB allocation on the master device. When you allocate
new devices to tempdb, they automatically become part of all three
segments. Once you allocate a second device to tempdb, you can drop
the master device from the default and logsegment segments. This
way, you can be sure that the worktables and other temporary tables
in tempdb are not created wholly or partially on the master device.

To drop the master device from the segments:

1. Alter tempdb onto another device, if you have not already done
so. The default or logsegment segment must include at least one
database device. For example:

alter database tempdb on tune3 = 20

2. Issue a use tempdb command, and then drop the master device
from the segment:

sp_dropsegment "default", tempdb, master

sp_dropdegment logsegment, tempdb, master

3. If you want to verify that the default segment no longer includes
the master device, issue the command:

select dbid, name, segmap
from sysusages, sysdevices
where sysdevices.low <= sysusages.size + vstart
 and sysdevices.high >= sysusages.size + vstart -1
 and dbid = 2
 and (status = 2 or status = 3)

SQL Server Performance and Tuning Guide 14-9

Sybase SQL Server Release 11.0.x Binding tempdb to Its Own Cache

The segmap column should report “1” for any allocations on
master, indicating that only the system segment still uses the
device:

 dbid name segmap
 ------ --------------- -----------
 2 master 1
 2 tune3 7

Spanning Disks Leads to Poor Performance

It is not a good idea to have tempdb span disks. If you do, your
temporary tables or worktables will span disk media, and this will
definitely slow things down. It is better for tempdb to have a single,
contiguous allocation.

Figure 14-2: tempdb spanning disks

Binding tempdb to Its Own Cache

Under normal SQL Server use, tempdb makes heavy use of the data
cache as temporary tables are created, populated, and then dropped.

Assigning tempdb to its own data cache:

• Keeps the activity on temporary objects from flushing other
objects out of the default data cache

• Helps spread I/O between multiple caches

Commands for Cache Binding

Use the sp_cacheconfig and sp_poolconfig commands to create named
data caches and to configure pools of a given size for large I/O. Only
a System Administrator can configure caches and pools. For

user1_db

disk_2 disk_3

user2_dbd_master

disk_1

tempdbtempdb

14-10 tempdb Performance Issues

Temporary Tables and Locking Sybase SQL Server Release 11.0.x

instructions on configuring named caches and pools, see
“Configuring Data Caches” on page 9-6 of the System Administration
Guide. Once the caches have been configured, and the server has been
restarted, you can bind tempdb to the new cache:

sp_bindcache "tempdb_cache", tempdb

Temporary Tables and Locking

Locking in tempdb can be caused by creating or dropping temporary
tables and their indexes.

When users create tables in tempdb, information about the tables
must be stored in system tables such as sysobjects, syscolumns, and
sysindexes. Updates to these tables requires a table lock. If multiple
user processes are creating and dropping tables in tempdb, heavy
contention can occur on the system tables. Worktables created
internally do not store information in system tables.

If contention for tempdb system tables is a problem with applications
that must repeatedly create and drop the same set of temporary
tables, try creating the tables at the start of the application. Then use
insert...select to populate them, and truncate table to remove all of the
data rows. Although insert...select requires logging and is slower than
select into, it can provide a solution to the locking problem.

Minimizing Logging in tempdb

Even though the trunc log on checkpoint database option is turned on in
tempdb, changes to tempdb are still written to the transaction log. You
can reduce log activity in tempdb by:

• Using select into instead of create table and insert

• Selecting only the columns you need into the temporary tables

Minimizing Logging with select into

When you create and populate temporary tables in tempdb, use the
select into command, rather than create table and insert...select whenever
possible. The select into/bulkcopy database option is turned on by
default in tempdb to enable this behavior.

select into operations are faster because they are only minimally
logged. Only the allocation of data pages is tracked, not the actual

SQL Server Performance and Tuning Guide 14-11

Sybase SQL Server Release 11.0.x Optimizing Temporary Tables

changes for each data row. Each data insert in an insert...select query is
fully logged, resulting in more overhead.

Minimizing Logging via Shorter Rows

If the application creating tables in tempdb uses only a few columns of
a table, you can minimize the number and size of log records by:

• Selecting just the columns you need for the application, rather
than using select * in queries that insert data into the tables

• Limiting the rows selected to just the rows that the applications
requires

Both of these suggestions also keep the size of the tables themselves
smaller.

Optimizing Temporary Tables

Many uses of temporary tables are simple and brief and require little
optimization. But if your applications require multiple accesses to
tables in tempdb, you should examine them for possible optimization
strategies. Usually, this involves splitting out the creation and

14-12 tempdb Performance Issues

Optimizing Temporary Tables Sybase SQL Server Release 11.0.x

indexing of the table from the access to it by using more than one
procedure or batch.

Figure 14-3: Optimizing and creating temporary tables

When you create a table in the same stored procedure or batch where
it is used, the query optimizer cannot determine how large the table
is, since the work of creating the table has not been performed at the
time the query is optimized. This applies to temporary tables and to
regular user tables.

The optimizer assumes that any such table has 10 data pages and 100
rows. If the table is really large, this assumption can lead the
optimizer to choose a suboptimal query plan.

These two techniques can improve the optimization of temporary
tables:

• Creating indexes on temporary tables

• Breaking complex uses of temporary tables into multiple batches
or procedures to provide information for the optimizer

Query optimized here

Table created here

Compile

Optimize

Parse and
Normalize

Query

Results

Execute

Optimize

Compile

SQL Server Performance and Tuning Guide 14-13

Sybase SQL Server Release 11.0.x Optimizing Temporary Tables

Creating Indexes on Temporary Tables

You can define indexes on temporary tables. In many cases, these
indexes can improve the performance of queries that use tempdb. The
optimizer uses these indexes just like indexes on ordinary user
tables. The only requirements are:

• The index must exist at the time the query using it is optimized.
You cannot create an index and then use it in a query in the same
batch or procedure.

• The statistics page must exist. If you create the temporary table
and create the index on an empty table, SQL Server does not
create a statistics page. If you then insert data rows, the optimizer
has no statistics.

• The optimizer may choose a suboptimal plan if rows have been
added or deleted since the index was created or since update
statistics was run.

Especially in complex procedures that create temporary tables and
then perform numerous operations on them, providing an index for
the optimizer can greatly increase performance.

Breaking tempdb Uses into Multiple Procedures

For example, this query causes optimization problems with
#huge_result:

create proc base_proc
as
 select *
 into #huge_result
 from ...
 select *
 from tab,
 #huge_result where ...

You can achieve better performance by using two procedures. When
the first procedure calls the second one, the optimizer can determine
the size of the table:

create proc base__proc
as
 select *
 into #huge_result
 from ...
 exec select_proc

14-14 tempdb Performance Issues

Optimizing Temporary Tables Sybase SQL Server Release 11.0.x

create proc select_proc
as
 select *
 from tab, #huge_result where ...

If the processing for #huge_result requires multiple accesses, joins, or
other processes such as looping with while, creating an index on
#huge_result may improve performance. Create the index in
base_proc, so that it is available when select_proc is optimized.

Creating Nested Procedures with Temporary Tables

You need to take an extra step to create the procedures described
above. You cannot create base_proc until select_proc exists, and you
cannot create select_proc until the temporary table exists. Here are the
steps:

1. Create the temporary table outside the procedure. It can be
empty; it just needs to exist and to have columns that are
compatible with select_proc:

select * into #huge_result from ... where 1 = 2

2. Create procedure select_proc, as shown above.

3. Drop #huge_result.

4. Create procedure base_proc.

SQL Server Performance and Tuning Guide 15-1

15 Memory Use and Performance 15.

How Memory Affects Performance

This chapter describes:

• How SQL Server uses memory and its cache

• The procedure cache

• The data cache

• User-configured data caches and performance issues

• The audit queue

In general, the more memory available, the faster SQL Server’s
response time will be. Memory conditions that can cause poor
performance are:

• Not enough total memory is allocated to SQL Server.

• Other SQL Server configuration options are set too high,
resulting in poor allocation of memory.

• Total data cache size is too small.

• Procedure cache size is too small.

• Only the default cache is configured on an SMP system with
several active CPUs, leading to contention for the data cache.

• User-configured data cache sizes are not appropriate for specific
user applications.

• Configured I/O sizes are not appropriate for specific queries.

• Audit queue size is not appropriate.

Chapter 8, “Configuring Memory” in the System Administration Guide
describes the process of determining the best memory configuration
values for SQL Server, and the memory needs of other server
configuration options.

Memory Fundamentals

Having ample memory reduces disk I/O, which improves
performance, since memory access is much faster than disk access.
When a user issues a query, the data and index pages must be in
memory, or read into memory, in order to examine the values on

15-2 Memory Use and Performance

How Much Memory to Configure Sybase SQL Server Release 11.0.x

them. If the pages already reside in memory, SQL Server does not
need to perform disk I/O.

Adding more memory is cheap and easy, but developing around
memory problems is expensive. Give SQL Server as much memory
as possible.

How Much Memory to Configure

Memory is the most important configuration option. Setting this
parameter incorrectly affects performance dramatically.

To optimize the size of memory for your system, a System
Administrator calculates the memory required for the operating
system and other uses and subtracts this from the total available
physical memory.

If SQL Server requests too little memory:

• SQL Server may not start.

• If it does start, SQL Server may access disk more frequently.

If SQL Server requests too much memory:

• SQL Server may not start.

• If it does start, the operating system page fault rate will rise
significantly and the operating system may need to be
reconfigured to compensate.

Chapter 8, “Configuring Memory,” in the System Administration
Guide provides a thorough discussion of:

• How to configure the total amount of memory that SQL Server
uses

• Other configurable parameters that use memory, affecting the
amount of memory left for processing queries

The amount of memory available to SQL Server is set by the
configuration parameter total memory. When SQL Server starts, it
allocates memory for the executable and other static memory needs.
What remains after all other memory needs have been met is
available for the procedure cache and data cache.

SQL Server Performance and Tuning Guide 15-3

Sybase SQL Server Release 11.0.x Caches on SQL Server

Figure 15-1: How SQL Server uses memory

A System Administrator can change the division of memory
available to these two caches by changing procedure cache percent. Users
can see the amount of memory available by executing sp_configure:

sp_configure "total memory"

See Chapter 8, “Configuring Memory,” in the System Administration
Guide for a full discussion of SQL Server memory configuration.

Caches on SQL Server

The memory that remains after SQL Server allocates all of the
memory needs described above is allocated to:

• The procedure cache – used for query plans, stored procedures
and triggers.

• The data cache – used for all data, index, and log pages. The data
cache can be divided into separate, named caches, with specific
databases or database objects bound to specific caches.

The split between the procedure cache and the data caches is
determined by configuration parameters.

O/S & other

Kernel

Procedures

Data

Additional netmem

SQL
Server

Physical
memory

Cache

memory
size

programs

SQL Server
internal structures

15-4 Memory Use and Performance

The Procedure Cache Sybase SQL Server Release 11.0.x

The Procedure Cache

SQL Server maintains an MRU/LRU chain of stored procedure
query plans. As users execute stored procedures, SQL Server looks in
the procedure cache for a query plan to use. If a query plan is
available, it is placed on the MRU end of the chain and execution
begins.

If no plan is in memory, or if all copies are in use, the query tree for
the procedure is read from the sysprocedures table. It is then
optimized, using the parameters provided to the procedure, and put
on the MRU end of the chain, and execution begins. Plans at the LRU
end of the page chain that are not in use are aged out of the cache.

Figure 15-2: The procedure cache

The memory allocated for the procedure cache holds the optimized
query plans (and occasionally trees) for all batches, including any
triggers.

If more than one user uses a procedure or trigger simultaneously,
there will be multiple copies of it in cache. If the procedure cache is
too small, users trying to execute stored procedures or queries that
fire triggers receive an error message, and have to resubmit the
query. Space becomes available when unused plans age out of the
cache.

Procedure cache

display_titlessp_helptextsp_helpdbupdate_trig

myproc

sp_helpdb

MRU LRU

SQL Server Performance and Tuning Guide 15-5

Sybase SQL Server Release 11.0.x The Procedure Cache

An increase in procedure cache size causes a corresponding decrease
in data cache size.

Figure 15-3: Effect of increasing procedure cache size on the data cache

When you first install SQL Server, the default procedure cache size is
configured as 20 percent of memory that remains after other memory
needs have been met. The optimum value for procedure cache varies
from application to application, and it may also vary as usage
patterns change throughout the day, week, or month. The
configuration parameter to set the size, procedure cache percent, is
documented in Chapter 11 of the System Administration Guide.

Getting Information About the Procedure Cache Size

When SQL Server is started, the error log states how much procedure
cache is available.

Figure 15-4: Procedure cache size messages in the error log

proc buffers

The number of “proc buffers” represents the maximum number of
compiled procedural objects that can reside in the procedure cache at
one time. In this example, no more than 6632 compiled objects can
reside in the procedure cache simultaneously.

Procedure cache

Data cache

Procedure cache size, in pages

Number of proc buffers allocated: 6632.
Number of blocks left for proc headers: 7507.

Maximum number of procedures in cache

15-6 Memory Use and Performance

The Procedure Cache Sybase SQL Server Release 11.0.x

proc headers

This indicates number of 2K pages dedicated to the procedure cache.
In this example, 7507 pages are dedicated to the procedure cache.
Each object in cache requires at least one page.

Procedure Cache Sizing

How big should the procedure cache be? On a production server, you
want to minimize the procedure reads from disk. When users need to
execute a procedure, SQL Server should be able to find an unused
tree or plan in the procedure cache for the most common procedures.
The percentage of times the server finds an available plan in cache is
called the cache hit ratio. Keeping a high cache hit ratio for
procedures in cache improves performance.

The formulas in Figure 15-5 make a good starting point.

Figure 15-5: Formulas for sizing the procedure cache

If you have nested stored procedures—procedure A calls procedure
B, which calls procedure C—all of them need to be in the cache at the
same time. Add the sizes for nested procedures, and use the largest
sum in place of “Size of largest plan” in the formula in Figure 15-5.

Remember, when you increase the size of the procedure cache, you
decrease the size of the data cache.

The minimum procedure cache size is the smallest amount of
memory that allows at least one copy of each frequently used
compiled object to reside in cache.

Estimating Stored Procedure Size

To get a rough estimate of the size of a single stored procedure, view,
or trigger, use:

select(count(*) / 8) +1
 from sysprocedures
where id = object_id(" procedure_name ")

=

Procedure
cache size

Minimum procedure
cache size needed

(Max # of concurrent users) *
(Size of largest plan) * 1.25=

(# of main procedures) *
(Average plan size)

SQL Server Performance and Tuning Guide 15-7

Sybase SQL Server Release 11.0.x The Data Cache

For example, to find the size of the titleid_proc in pubs2:

select(count(*) / 8) +1
 from sysprocedures
where id = object_id("titleid_proc")

 3

Monitoring Procedure Cache Performance

sp_sysmon reports on stored procedure executions and the number of
times that stored procedures need to be read from disk. For more
information, see “Procedure Cache Management” on page 19-61.

Procedure Cache Errors

If there is not enough memory to load another query tree or plan,
SQL Server reports Error 701. If the maximum number of compiled
objects is already in use, SQL Server also reports an Error 701.

The Data Cache

After other memory demands have been satisfied, all remaining
space is available in the data cache. The data cache contains pages
from recently accessed objects, typically:

• sysobjects, sysindexes, and other system tables for each database

• Active log pages for each database

• The higher levels of frequently used indexes and parts of the
lower levels

• Parts of frequently accessed tables

Default Cache at Installation Time

When you first install SQL Server, it has a single data cache which is
used by all SQL Server processes and objects for data, index, and log
pages.

The following pages describe the way this single data cache is used.
“Named Data Caches” on page 15-12 describes how to improve
performance by dividing the data cache into named caches, and how
to bind particular objects to these named caches. Most of the

15-8 Memory Use and Performance

The Data Cache Sybase SQL Server Release 11.0.x

concepts on aging, buffer washing, and caching strategies apply to
both the user-defined data caches and the default data cache.

Page Aging in Data Cache

The SQL Server data cache is managed on a most-recently-
used/least-recently-used (MRU/LRU) basis. As pages in the cache
age, they enter a wash area, where any dirty pages (pages that have
been modified while in memory) are written to disk. There are some
exceptions to this:

• A special strategy ages out index pages and OAM pages more
slowly than data pages. These pages are accessed frequently in
certain applications, and keeping them in cache can significantly
reduce disk reads. See “number of index trips” on page 11-22 and
“number of oam trips” on page 11-23 of the System Administration
Guide for more information.

• For queries that scan heaps or tables with clustered indexes, or
perform nonclustered index scans, SQL Server may choose to use
a cache replacement strategy that does not flush other pages out
of the cache with pages that are used only once for the entire
query.

• The checkpoint process tries to ensure that if SQL Server needs to
be restarted, the recovery process can be completed in a
reasonable period of time. When the checkpoint process
estimates that the number of changes to a database will take
longer to recover than the configured value of the recovery interval
parameter, it traverses the cache, writing dirty pages to disk. A
housekeeper task also writes dirty pages to disk when idle time is
available between user processes.

Effect of Data Cache on Retrievals

Consider a series of random select statements that are executed over
a period of time. If the cache is empty initially, the first select
statement is guaranteed to require disk I/O. As more queries are
executed and the cache is being filled, there is an increasing
probability that one or more page requests can be satisfied by the
cache, thereby reducing the average response time of the set of
retrievals. Once the cache is filled, there is a fixed probability of
finding a desired page in the cache from that point forward.

SQL Server Performance and Tuning Guide 15-9

Sybase SQL Server Release 11.0.x The Data Cache

Figure 15-6: Effects of random selects on the data cache

If the cache is smaller than the total number of used pages, there is a
chance that a given statement will have to perform disk I/O. A cache
does not reduce the maximum possible response time, but it does
decrease the likelihood that the maximum delay will be suffered by a
particular process.

Effect of Data Modifications on the Cache

The behavior of the cache in the presence of update transactions is
more complicated than for retrievals. There is still an initial period
during which the cache fills. Then, because cache pages are being
modified, there is a point at which the cache must begin writing
those pages to disk before it can load other pages. Over time, the
amount of writing and reading stabilizes, and subsequent
transactions have a given probability of requiring a disk read and
another probability of causing a disk write. The steady-state period
is interrupted by checkpoints, which cause the cache to write all dirty
pages to disk.

Fill
cache

Av
er

ag
e

re
sp

on
se

 ti
m

e

Random selects over time

Steady
state

15-10 Memory Use and Performance

The Data Cache Sybase SQL Server Release 11.0.x

Figure 15-7: Effects of random data modifications on the data cache

Data Cache Performance

Data cache performance can be observed by examining the cache hit
ratio, the percentage of page requests that are serviced by the cache.
One hundred percent is outstanding, but implies that your data
cache is as large as the data, or at least large enough to contain all the
pages of your frequently used tables and indexes. A low percentage
of cache hits indicates that the cache may be too small for the current
application load. Very large tables with random page access
generally show a low cache hit ratio.

Testing Data Cache Performance

It is important to consider the behavior of the data and procedure
caches when you measure the performance of a system. When a test
begins, the cache can be in any one of the following states:

• Empty

• Fully randomized

• Partially randomized

• Deterministic

An empty or fully randomized cache yields repeatable test results
because the cache is in the same state from one test run to another. A
partially randomized or deterministic cache contains pages left by
transactions that were just executed. When testing, such pages could

Av
er

ag
e

re
sp

on
se

 ti
m

e

Random updates over time

Fill
cache

Dirty pages
start aging

Aging
steady
state

Checkpoint

SQL Server Performance and Tuning Guide 15-11

Sybase SQL Server Release 11.0.x The Data Cache

be the result of a previous iteration of the test. In such cases, if the
next test steps request those pages, then no disk I/O will be needed.

Such a situation can bias the results away from a purely random test
and lead to inaccurate performance estimates. The best testing
strategy is to start with an empty cache or to make sure that all test
steps access random parts of the database. For more precise testing,
you need to be sure that the mix of queries executed during the tests
accesses the database in patterns that are consistent with the planned
mix of user queries on your system.

Cache Hit Ratio for a Single Query

To see the cache hit ratio for a single query, use set statistics io to see the
number of logical and physical reads, and set showplan on to see the
I/O size used by the query.

To compute the cache hit ratio, use the formula in Figure 15-8.

Figure 15-8: Formula for computing the cache hit ratio

With statistics io, physical reads are reported in I/O-size units. If a
query uses 16K I/O, it reads 8 pages with each I/O operation. If
statistics io reports 50 physical reads, it has read 400 pages. Use
showplan to see the I/O size used by a query.

Cache Hit Ratio Information from sp_sysmon

The sp_sysmon system procedure reports on cache hits and misses for:

• All caches on SQL Server

• The default data cache

• Any user-configured caches

The server-wide report provides the total number of cache searches
and the percentage of hits and misses. See “Cache Statistics
Summary (All Caches)” on page 19-50.

For each cache, the report contains the search, hit and miss statistics
and also reports on the number of times that a needed buffer was
found in the wash section. See “Cache Management By Cache” on
page 19-54.

Cache hit ratio =
Logical reads - (Physical reads * Pages per IO)

Logical reads

15-12 Memory Use and Performance

Named Data Caches Sybase SQL Server Release 11.0.x

Named Data Caches

When you install SQL Server, it has a single default data cache with
a 2K memory pool. To improve performance, you can split this cache
into multiple named data caches, and bind databases or database
objects to them.

Named data caches are not a substitute for careful query
optimization and indexing. In fact, splitting the large default cache
into smaller caches and restricting I/O to them can lead to worse
performance. For example, if you bind a single table to a cache, and
it makes poor use of the space there, no other objects on SQL Server
can use that memory.

You can also configure 4K, 8K, and 16K memory pools in both user-
defined data caches and the default data caches, allowing SQL Server
to perform large I/O.

Named Data Caches and Performance

Adding named data caches can improve performance in the
following ways:

• When changes are made to a cache by any user process, a
spinlock denies all other processes access to the cache. Although
spinlocks are held for extremely brief durations, they can slow
performance in multiprocessor systems with high transaction
rates. When you configure multiple caches, each is controlled by
a separate spinlock, increasing concurrency on systems with
multiple CPUs.

• You can configure caches large enough to hold critical tables and
indexes. This keeps other server activity from contending for
cache space, and speeds up queries uses these tables since the
needed pages are always found in cache.

• You can bind a “hot” table—a table in high demand by user
applications—to one cache and indexes on the table to other
caches to increase concurrency.

• You can create a cache large enough to hold the “hot pages” of a
table where a high percentage of the queries reference only a
portion of the table. For example, if a table contains data for a
year, but 75% of the queries reference data from the most recent
month (about 8 percent of the table), configuring a cache of about
10% of the table size provides room to keep the most frequently

SQL Server Performance and Tuning Guide 15-13

Sybase SQL Server Release 11.0.x Named Data Caches

used pages in cache, with some space for the less frequently used
pages.

• You can assign tables or databases used in decision support (DSS)
to specific caches with large I/O configured. This keeps DSS
applications from contending for cache space with online
transaction processing (OLTP) applications. DSS applications
typically access large numbers of sequential pages, and OLTP
applications typically access relatively few random pages.

• You can bind tempdb to its own cache. All processes that create
worktables or temporary tables use tempdb, so binding it to its
own cache keeps its cache use from contending with other user
processes. Proper sizing of tempdb’s cache can keep most tempdb
activity in memory for many applications. If this cache is large
enough, tempdb activity can avoid performing I/O.

• You can bind a database’s log to a cache, again reducing
contention for cache space and access to the cache.

Most of these possible uses for named data caches have the greatest
impact on multiprocessor systems with high transaction rates or
frequent DSS queries and multiple users. Some of them can increase
performance on single CPU systems when they lead to improved
utilization of memory and reduce I/O.

Large I/Os and Performance

You can configure the default cache and any named caches you
create for large I/O by splitting a cache into pools. The default I/O
size is 2K, one SQL Server data page. For queries where pages are
stored sequentially and accessed sequentially, you can read up to
eight data pages in a single I/O. Since the majority of I/O time is
spent doing physical positioning and seeking on the disk, large I/O
can greatly reduce disk access time.

Large I/O can increase performance for:

• Queries that table scan, both single-table queries and queries that
perform joins

• Queries that scan the leaf level of a nonclustered index

• Queries that use text or image data

• Queries that allocate several pages, such as select into

• Bulk copy operations on heaps, both copy in and copy out

• The update statistics command, dbcc checktable, and dbcc checkdb

15-14 Memory Use and Performance

Named Data Caches Sybase SQL Server Release 11.0.x

When a cache is configured for 16K I/O and the optimizer chooses
16K I/O for the query plan, SQL Server reads an entire extent, eight
2K data pages, when it needs to access a page that is not in cache.
There are some occasions when 16K I/O cannot be performed. See
“When prefetch Specification Is Not Followed” on page 9-11.

Types of Queries That Can Benefit From Large I/O

Certain types of SQL Server queries are likely to benefit from large
I/Os. Identifying these types of queries can help you determine the
correct size for data caches and memory pools.

In the following examples, the database or the specific table, index or
text and image page chain must be bound to a named data cache that
has large memory pools, or the default data cache must have large
I/O pools. Most of the queries shown here use fetch and discard
(MRU) replacement strategy. Types of queries that can benefit from
large I/O are:

• Queries that scan entire tables, either heap tables or tables with
clustered indexes:

select title_id, price from titles

select count(*) from authors
 where state = "CA" /* no index on state */

• Range queries on tables with clustered indexes. These include
queries like:

where indexed_colname < value
where indexed_colname > value
where indexed_colname between value1 and value2
where indexed_colname > value1
 and indexed_colname < value2
where indexed_colname like "string%"

• Queries that scan the leaf level of a nonclustered index, both
matching and nonmatching scans. If there is a nonclustered index
on type, price, this query could use large I/O on the leaf level of
then index, since all the columns used in the query are contained
in the index:

select type, sum(price)
 from titles
 group by type

• Queries that select text or image columns:

select au_id, copy from blurbs

SQL Server Performance and Tuning Guide 15-15

Sybase SQL Server Release 11.0.x Named Data Caches

• Join queries where a full scan of the inner table is required:

select outer.c1, inner.c3
 from outer, inner
 where outer.c1 = inner.c2

If both tables use the same cache, and one of the tables fits
completely in cache, that table is chosen as the inner table and
loaded into cache with the LRU replacement strategy, using
large I/O, if available. The outer table can also benefit from large
I/O, but uses fetch and discard (MRU) replacement strategy, so
the pages are read into cache just before the wash marker, since
the pages for the outer table are needed only once to satisfy the
query.

Figure 15-9: Caching strategies joining a large table and a small table

If neither table fits completely in cache, the MRU replacement
strategy will be used for both tables, using large I/Os if they are
available in the cache.

• Queries that generate Cartesian products, such as:

 select title, au_lname
 from titles, authors

This query needs to scan all of one table, and for each row in that
table, it needs to scan the other table. Caching strategies for these
queries follows the same principles described for joins.

Choosing the Right Mix of I/O Sizes for a Cache

You can configure up to 4 pools in any data cache, but in most cases,
caches for individual objects will perform best with only a 2K pool
and a 16K pool. Caches for databases where the log is not bound to a
separate cache should also have a 4K pool configured for syslogs if 4K
log I/O size is configured for the database.

Wash marker LRUMRU

Inner table Outer table

15-16 Memory Use and Performance

Named Data Caches Sybase SQL Server Release 11.0.x

8K pools might sometimes provide better performance in a few
cases:

• There may be some applications with extremely heavy logging
where an 8K log I/O size would perform better than 4K log I/O,
but most performance testing has shown the 4K log I/O size to be
optimal.

• In cases where a 16K pool is not being used due to storage
fragmentation or because many of the needed pages are already
in a 2K pool, an 8K pool might perform better than a 16K pool.
For example, if a single page from an extent is in the 2K pool, 7 2K
I/Os would be needed to read the rest of the pages from the
extent. With an 8K pool, 1 8K I/O (4 pages) and 3 2K I/Os could
be used to read the 7 pages. However, if a 16K pool exists, and a
large I/O is denied, SQL Server does not subsequently try each
successively smaller pool, but immediately performs the 2K
I/Os. You would only configure an 8K pool if a 16K pool was not
effective in reducing I/O. You can transfer all of the space from
the 8K pool to the 16K pool using sp_poolconfig.

Cache Replacement Strategies

Pages can be linked into a cache at two locations: at the head of the
MRU/LRU chain in the pool, or at the pool’s wash marker. The SQL
Server optimizer chooses the cache replacement strategy, unless the
strategy is specified in the query. The two strategies are:

• “LRU replacement strategy” replaces a least-recently used page,
linking the newly read page or pages at the beginning of the page
chain in the pool.

• “Fetch-and-discard” strategy or “MRU replacement strategy”
links the newly read buffers at the wash marker in the pool.

Cache replacement strategies can affect the cache hit ratio for your
query mix:

• Pages that are read into cache with the fetch-and-discard strategy
remain in cache a much shorter time than queries read in the
MRU end of the cache. If such a page is needed again, for example
if the same query is run again very soon, the pages will probably
need to be read from disk again.

• Pages that are read into cache with the fetch-and-discard strategy
do not displace pages that already reside in cache before the wash
mark. This means that pages before wash marker are much more

SQL Server Performance and Tuning Guide 15-17

Sybase SQL Server Release 11.0.x Named Data Caches

likely to be in cache again when they are needed for a subsequent
query.

See Figure 3-9 and Figure 3-10 on page 3-16 for illustrations of these
strategies.

The Optimizer and Cache Choices

By the time SQL Server has optimized a query and needs to access
data pages, it:

• Has a good estimate of the number of pages it needs to read for
each table

• Knows the size of the data cache(s) available to the tables and
indexes in the query and the I/O size available for the cache(s),
and has used this information to incorporate the I/O size and
cache strategy into the query plan

• Has determined whether the data will be accessed via a table
scan, clustered index access, nonclustered index, or other
optimizer strategy

• Has determined which cache strategy to use for each table and
index

The optimizer’s knowledge is limited, though, to the single query it
is analyzing, and to certain statistics about the table and cache. It
does not have information about how many other queries are
simultaneously using the same data cache, and it has no statistics on
whether table storage is fragmented in such a way that large I/Os
would be less effective. This combination of factors can lead to
excessive I/O in some cases. For example, users may experience
higher I/O and poor performance if many queries with large result
sets are using a very small memory pool.

Commands to Configure Named Data Caches

The commands to configure caches and pools are:

Command Function

sp_cacheconfig Creates or drops names caches and changes the size or
cache type. Reports on sizes of caches and pools.

sp_poolconfig Creates and drops I/O pools and changes their size.

15-18 Memory Use and Performance

Named Data Caches Sybase SQL Server Release 11.0.x

For a full description of the process of configuring named caches and
binding objects to caches, see Chapter 9, “Configuring Data Caches,”
in the System Administration Guide. Only a System Administrator can
configure named caches and bind database objects to them.

For information on sp_sysmon, see Chapter 19, “Monitoring SQL
Server Performance with sp_sysmon.”

Commands for Tuning Query I/O Strategies and Sizes

You can affect the I/O size and cache strategy for select, delete, and
update commands. These options are described in Chapter 9,
“Advanced Optimizing Techniques.”

• For information about specifying the I/O size, see “Specifying
I/O Size in a Query” on page 9-9.

• For information about specifying cache strategy, see “Specifying
the Cache Strategy” on page 9-12.

Named Data Cache Recommendations

These cache recommendations can improve performance on single
and multiprocessor servers:

• Bind tempdb to its own cache, and configure the cache for 16K I/O
for use by select into queries if these are used in your applications.

• Bind the logs for your high-use databases to a named data cache.
Configure pools in this cache to match the log I/O size set with
sp_logiosize. See “Choosing the I/O Size for the Transaction Log”
on page 15-25.

sp_bindcache Binds databases or database objects to a cache.

sp_unbindcache Unbinds specific objects or databases from a cache.

sp_unbindcache_all Unbinds all objects bound to a specified cache.

sp_helpcache Reports summary information about data caches and lists
the databases and databases objects that are bound to a
cache. Also reports on the amount of overhead required
by a cache.

sp_sysmon Reports statistics useful for tuning cache configuration,
including cache spinlock contention, cache utilization and
disk I/O patterns.

Command Function

SQL Server Performance and Tuning Guide 15-19

Sybase SQL Server Release 11.0.x Sizing Named Caches

• Bind sysindexes and its index (also named sysindexes) to a cache.
Pages from sysindexes are needed almost constantly by SQL
Server. sysindexes is usually a small table, and may only require a
512K cache. If your applications include frequent ad hoc queries
rather than stored procedures, you may see improvement by
binding sysobjects, syscolumns, and sysprotects to a cache, since
these tables are needed to parse and compile ad hoc queries.

• If a table or its index is small and constantly in use, configure a
cache just for that object, or for a few such objects.

• Keep cache sizes and pool sizes proportional to the cache
utilization objects and queries:

- If 75 percent of the work on your server is performed in one
database, it should be allocated approximately 75 percent of
the data cache, in a cache created specifically for the database,
in caches created for its busiest tables and indexes, or in the
default data cache.

- If approximately 50 percent of the work in your database can
use large I/O, configure about 50 percent of the cache in a 16K
memory pool.

• It is better to view the cache as a shared resource than to try to
micro-manage the caching needs of every table and index. Start
cache analysis and testing at the database level, with particular
tables and objects with high I/O needs or high application
priorities and also with special uses such as tempdb and
transaction logs.

• On SMP servers, use multiple caches to avoid contention for the
cache spinlock:

- Use a separate cache for the transaction log for busy databases,
and separate caches for some of the tables and indexes that are
accessed frequently.

- If spinlock contention is greater than 10 percent on a cache,
split it into multiple caches. Use sp_sysmon periodically during
high-usage periods to check for cache contention. See
“Spinlock Contention” on page 19-54.

Sizing Named Caches

Creating named data caches and memory pools and binding
databases and database objects to the caches can dramatically hurt or
improve SQL Server performance. For example:

15-20 Memory Use and Performance

Sizing Named Caches Sybase SQL Server Release 11.0.x

• A cache this is poorly used hurts performance. If you allocate 25
percent of your data cache to a database that services a very small
percentage of the query activity on your server, I/O increases in
other caches.

• A pool that is unused hurts performance. If you add a 16K pool,
but none of your queries use it, you have taken space away from
the 2K pool. The 2K pool’s cache hit ratio will be reduced and I/O
will increase.

• A pool that is overused hurts performance. If you configure a
small 16K pool and virtually all of your queries use it, I/O rates
increase. The 2K cache will be under-used, while pages are
rapidly cycled through the 16K pool. The cache hit ratio in the
16K pool will be very poor.

• When you balance your pool utilization within a cache,
performance can increase dramatically. Both 16K and 2K queries
may experience improved cache hit ratios. The large number of
pages often used by queries that perform 16K I/O will not flush
2K pages from disk. Queries using 16K will perform
approximately one-eighth the number of I/Os required by 2K
I/O.

Cache Configuration Goals

Goals of cache configuration are:

• Reduced contention for spinlocks on multiple engine servers.

• Improved cache hit ratios and/or reduced disk I/O. As a bonus,
improving cache hit ratios for queries can reduce lock contention,
since queries that do not need to perform physical I/O generally
hold locks for shorter periods of time.

• Fewer physical reads due to effective use of large I/O.

• Fewer physical writes, because recently modified pages are not
being pushed from cache by other processes.

In addition to the commands such as showplan and statistics io that help
tune on a per-query basis, you need to use a performance monitoring
tool such as SQL Server Monitor or sp_sysmon to look at the complex
picture of how multiple queries and multiple applications share
cache space when they run simultaneously.

SQL Server Performance and Tuning Guide 15-21

Sybase SQL Server Release 11.0.x Sizing Named Caches

Development Versus Production Systems

In an ideal world, you would have access to a development system
that exactly duplicated the configuration and activity of your
production system. You could tune your cache configuration on the
development system and reproduce the perfected configuration on
your production server. In reality, most development systems can
provide only an approximate test-bed for cache configuration, and
fine-tuning cache sizes on a development system must be done
incrementally in small windows of time when the system can be
restarted. Tuning pool sizes and cache bindings is dynamic, and
therefore more flexible since a re-start of the server is not required.

In a production environment, the possible consequences of
misconfiguring caches and pools are significant enough that you
should proceed carefully, and only after thorough analysis of the
issues discussed in the following sections. In a test or development
environment, you can use sp_sysmon or other monitoring tools to run
individual queries, particular query mixes, or simulations of your
production environment in order to develop an understanding of the
interaction these queries have in various cache configurations.

When you transfer what you have learned from a test environment
to a production environment, remember that the relative size of
objects and caches can be critical to the choice of query plans,
especially in the case of join queries using the same cache. If your
tests involved tables of a few hundred pages and your production
database’s tables are much larger, different cache strategies may be
chosen using a cache of the same size.

Gather Data, Plan, Then Implement

The first step in developing a plan for cache usage is to provide as
much memory as possible for the data cache:

• Configure SQL Server with as much total memory as possible.
See Chapter 8, “Configuring Memory” in the System
Administration Guide for more information.

• Once all other configuration parameters that use SQL Server
memory have been configured, check the size of the default data
cache with sp_cacheconfig to determine how much space is
available.

• Use your performance monitoring tools to establish baseline
performance, and to establish your tuning goals.

15-22 Memory Use and Performance

Sizing Named Caches Sybase SQL Server Release 11.0.x

The process of dividing the cache involves looking at existing objects
and applications:

• Evaluate cache needs by analyzing I/O patterns and evaluate
pool needs by analyzing query plans and I/O statistics.

• Configure the easier choices and biggest wins first:

- Choose a size for a tempdb cache

- Choose a size for any log caches, and tune the log I/O size

- Choose a size for specific tables or indexes that you want to
keep entirely in cache

- Add large I/O pools for index or data caches as appropriate

• Once these sizes are determined, examine remaining I/O
patterns, cache contention, and query performance. Configure
caches proportional to I/O usage for objects and databases.

Keep your performance goals in mind as you configure caches:

• If your major goal in adding caches is to reduce spinlock
contention, moving a few high-I/O objects to separate caches
may be sufficient to reduce the spinlock contention and improve
performance.

• If your major goal is to improve response time by improving
cache hit ratios for particular queries or applications, creating
caches for the tables and indexes used by those queries should be
guided by a thorough understanding of the access methods and
I/O requirements.

Evaluating Caching Needs

Generally, your goal is to configure caches in proportion to the
number of times that pages in the caches will be accessed by your
queries, and to configure pools within caches in proportion to the
number of pages used by queries that chooses I/O of that pool’s size.

You can use SQL Server Monitor to check physical and logical I/O by
object. This provides a good basis for making relative cache-sizing
decisions.

If your databases and their logs are on separate logical devices, you
can estimate cache proportions using sp_sysmon or operating system
commands to examine physical I/O by device. See “Disk I/O
Management” on page 19-66 for information about the sp_sysmon
output showing disk I/O.

SQL Server Performance and Tuning Guide 15-23

Sybase SQL Server Release 11.0.x Sizing Named Caches

Figure 15-10:Checking disk I/O by database

Cache Sizing for Special Objects, tempdb and Transaction Logs

Creating caches for tempdb, the transaction logs, and for a few tables
or indexes that you want to keep completely in cache can reduce
cache spinlock contention and improve cache hit ratios.

Determining Cache Sizes for Special Tables or Indexes

You can use sp_spaceused to determine the size of tables or indexes
that you want to keep entirely in cache. This includes the sysindexes
table and its index. sysindexes is generally smaller than the minimum
cache size of 512K, so you might want to have it share a cache with
other tables. If you know how fast these tables increase in size, allow
some extra cache space for their growth.

Examining tempdb’s Cache Needs

Look at your use of tempdb:

salesdb

saleshistorydb

master device, with tempdb
also using a second disk

70% of I/O

20% of I/O

10% of I/O

segment with one table
log

log

15-24 Memory Use and Performance

Sizing Named Caches Sybase SQL Server Release 11.0.x

• Use statistics io to determine the size of temporary tables and
worktables generated by your queries. Look at the number of
pages generated by select into queries. These queries can use 16K
I/O, so you can use this information to help you size a 16K pool
for tempdb’s cache.

• Estimate the duration (in wall clock time) of the temporary tables
and worktables.

• Estimate how often queries that create temporary tables and
worktables are executed. Try to estimate the number of
simultaneous users, especially for queries that generate very
large result sets in tempdb.

With this information, you can a form a rough estimate of the
amount of simultaneous I/O activity in tempdb. Depending on your
other cache needs, you can choose to size tempdb so that virtually all
tempdb activity takes place in cache and few temporary tables are
actually written to disk.

In most cases, the first 2MB of tempdb are stored on the master device,
with additional space on another logical device. You can use
sp_sysmon or SQL Server monitor on those devices to help determine
physical I/O rates.

Examining Cache Needs for Transaction Logs

On SMP systems with high transaction rates, binding the transaction
log to its own cache can reduce cache spinlock contention.

The current page of the transaction log is written to disk when
transactions commit, so your objective in sizing the cache or pool for
the transaction log is not avoiding writes. Instead, you should try to
size the log to reduce the number of times that processes that need to
re-read log pages must go to disk because the pages have been
flushed from the cache.

SQL Server processes that need to read log pages are:

• Triggers that use the inserted and deleted tables, which are built
from the transaction log when the trigger queries the tables.

• Deferred updates, deletes and inserts, since these require re-
reading the log to apply changes to tables or indexes

• Transactions that are rolled back, since log pages must be
accessed to roll back the changes.

When sizing a cache for a transaction log:

SQL Server Performance and Tuning Guide 15-25

Sybase SQL Server Release 11.0.x Sizing Named Caches

• Examine the duration of processes that need to re-read log pages.
Estimate how long the longest triggers and deferred updates last.
if some of your long running transactions are rolled back, check
the length of time they run.

• Estimate the rate of growth of the log during the this time period.
You can check your transaction log size with sp_spaceused at
regular intervals to estimate how fast the log grows.

Use this estimate of log growth and the time estimate to size the log
cache. For example, if the longest deferred update takes 5 minutes,
and the transaction log for the database grows at 125 pages per
minute, 625 are allocated for the log while this transaction executes.
If a few transactions or queries are especially long-running, you may
want to size the log for the average length, rather than the maximum
length of time.

Choosing the I/O Size for the Transaction Log

When users perform operations that require logging, log records are
first stored in a “user log cache” until certain events flush the user’s
log records to the current transaction log page in cache. Log records
are flushed when a transaction ends, when the log page is full, when
the transaction changes tables in another database, at certain system
events, and when another process needs to write a page referenced in
the user log cache.

To economize on disk writes, SQL Server holds partially filled
transaction log pages for a very brief span of time so that records of
several transactions can be written to disk simultaneously. This
process is called “group commit.”

In environments with high transaction rates or transactions that
create large log records, the 2K transaction log pages fill quickly, and
a large proportion of log writes are due to full log pages, rather than
group commits. Creating a 4K pool for the transaction log can greatly
reduce log writes in these environments.

sp_sysmon reports on the ratio of transaction log writes to transaction
log allocations. You should try using 4K log I/O if all of these
conditions are true:

• Your database is using 2K log I/O

• The number of log writes per second is high

• The average number of writes per log page is slightly above one

15-26 Memory Use and Performance

Sizing Named Caches Sybase SQL Server Release 11.0.x

Here is some sample output showing that a larger log I/O size might
help performance:

 per sec per xact count % of total
Transaction Log Writes 22.5 458.0 1374 n/a
Transaction Log Alloc 20.8 423.0 1269 n/a
Avg # Writes per Log Page n/a n/a 1.08274 n/a

See “Transaction Log Writes” on page 19-32 for more information.

Configuring for Large Log I/O Size

To check the log I/O size for a database, you can check the server’s
error log. The size of I/O for each database is printed in the error log
when SQL Server starts. You can also use the sp_logiosize system
procedure. To see the size for the current database, execute
sp_logiosize with no parameters. To see the size for all databases on the
server and the cache in use by the log, use:

sp_logiosize "all"

To set the log I/O size for a database to 4K, the default, you must be
using the database. This command sets the size to 4K:

sp_logiosize "default"

By default, SQL Server sets the log I/O size for user databases to 4K.
If no 4K pool is available in the cache that the log uses, 2K I/O is
automatically used instead.

If a database is bound to a cache, all objects not explicitly bound to
other caches use the database’s cache. This includes the syslogs table.
In order to bind syslogs to another cache, you must first put the
database in single user mode with sp_dboption, and then use the
database and execute sp_bindcache. Here is an example:

sp_bindcache pubs_log, pubtune, syslogs

Further Tuning Tips for Log Caches

For further tuning after configuring a cache for the log, check
sp_sysmon output. Look at output for:

• The cache used by log (the cache it is explicitly bound to, or the
cache that its database uses)

• The disk that the log is stored on

• The average number of writes per log page

SQL Server Performance and Tuning Guide 15-27

Sybase SQL Server Release 11.0.x Sizing Named Caches

When looking at the log cache section, check “Cache Hits” and
“Cache Misses” to determine whether most of the pages needed for
deferred operations, triggers and rollbacks are being found in cache.

In the “Disk Activity Detail” section, look at the number of “Reads”
performed.

Basing Data Pool Sizes on Query Plans and I/O

When you choose divide a cache for tables and/or indexes into
pools, try to make this division based on the proportion of I/O
performed by your queries that use the corresponding I/O sizes. If
most of your queries can benefit from 16K I/O, and you configure a
very small 16K cache, you may actually see worse performance.
Most of the space in the 2K pool will remain unused, and the 16K
pool will experience high turnover. The cache hit ratio will be
significantly reduced. The problem will be most severe with join
queries that have to repeatedly re-read the inner table from disk.

Making a good choice about pool sizes requires:

• A thorough knowledge of the application mix and the I/O size
your queries can use

• Careful study and tuning, using monitoring tools to check cache
utilization, cache hit rates, and disk I/O

Checking I/O Size for Queries

You can examine query plans and I/O statistics to determine those
queries that are likely to perform large I/O and the amount of I/O
these queries perform. This information can form the basis for
estimating the amount of 16K I/O the queries should perform with a
16K memory pool. For example, a query that table scans and
performs 800 physical I/Os using a 2K pool should perform about
100 8K I/Os. See “Types of Queries That Can Benefit From Large
I/O” on page 15-14 for a list of types.

To test out your estimates, however, you need to actually configure
the pools and run the individual queries and your target mix of
queries to determine optimum pool sizes. Choosing a good initial
size for your first test using 16K I/O depends on a good sense of the
types of queries in your application mix. This estimate is especially
important if you are configuring a 16K pool for the first time on an
active production server. Make the best possible estimate of
simultaneous uses of the cache. Here are some guidelines:

15-28 Memory Use and Performance

Sizing Named Caches Sybase SQL Server Release 11.0.x

• If you observe that most I/O is occurring in point queries using
indexes to access a small number of rows, make the 16K pool
relatively small, say about 10 to 20 percent of the cache size.

• If you estimate that a large percentage of the I/Os will be to the
16K pool, configure 50 to 75 percent of the cache for 16K I/O.
Queries that use 16K I/O include any query that table scans,
those that use the clustered index for range searches and order by,
and queries that perform matching or nonmatching scans on
nonclustered indexes.

• If you are unsure, configure about 20 percent of your cache space
in a 16K pool, and use showplan and statistics i/o while you run your
queries. Examine the showplan output for the “Using 16K I/O”
message. Check statistics i/o output to see how much I/O is
performed.

• If you feel that your typical application mix uses both 16K I/O
and 2K I/O simultaneously, configure 30 to 40 percent of your
cache space for 16K I/O. Your optimum may be higher or lower,
depending on the actual mix and the I/O sizes chosen by the
query. If many tables are accessed by both 2K I/O and 16K I/O,
SQL Server cannot use 16K I/O if any page from the extent is in
the 2K cache, and performs 2K I/O on the other pages in the
extent. This adds to the I/O in the 2K cache.

After configuring for 16K I/O, monitor I/O for the affected devices
using sp_sysmon or SQL Server Monitor. Also use showplan and statistics
io to observe your queries.

• Look especially for join queries where an inner table would use
16K I/O, and the table is repeatedly scanned using fetch-and-
discard (MRU) strategy. This can occur when neither table fits
completely in cache. If increasing the size of the 16K pool allows
the inner table to fit completely in cache, I/O can be significantly
reduced. You might also consider binding the two tables to
separate caches.

• Look for excessive 16K I/O, when compared to table size in
pages. For example, if you have an 800-page table, and a 16K I/O
table scan performs significantly more than 100 I/Os to read this
table, you may see improvement by re-creating the clustered
index on this table.

SQL Server Performance and Tuning Guide 15-29

Sybase SQL Server Release 11.0.x Overhead of Pool Configuration and Binding Objects

Configuring Buffer Wash Size

The wash area for each pool in each cache is configurable. If the wash
size is set too high, SQL Server may perform unnecessary writes. If
the wash area is too small, SQL Server may not be able to find a clean
buffer at the end of the buffer chain and may have to wait for I/O to
complete before it can proceed. Generally, wash size defaults are
correct, and only need to be adjusted in large pools with very high
rates of data modification. See “Changing the Wash Area for a
Memory Pool” on page 9-18 of the System Administration Guide for
more information.

Overhead of Pool Configuration and Binding Objects

Configuring memory pools and binding objects to caches can affect
users on a production system, so these activities are best performed
during off-hours.

Pool Configuration Overhead

When a pool is created, deleted, or changed, the plans of all stored
procedures and triggers that use objects bound to the cache are
recompiled the next time they are run. If a database is bound to the
cache, this affects all of the objects in a database.

There is a slight amount of overhead involved in moving buffers
between pools.

Cache Binding Overhead

When you bind or unbind an object, all of the object’s pages that are
currently in the cache are flushed to disk (if dirty) or dropped from
the cache (if clean) during the binding process. The next time the
pages are needed by user queries, they must be read from the disk
again, slowing the performance of the queries.

SQL Server acquires an exclusive lock on the table or index while the
cache is being cleared, so binding can slow other users of the object.
The binding process may have to wait until for transactions to
complete in order to acquire the lock.

15-30 Memory Use and Performance

Maintaining Data Cache Performance for Large I/O Sybase SQL Server Release 11.0.x

➤ Note
The fact that binding and unbinding objects from caches removes them

from memory can be useful when tuning queries during development and

testing. If you need to check physical I/O for a particular table, and earlier

tuning efforts have brought pages into cache, you can unbind and rebind

the object. The next time the table is accessed, all pages used by the query

must be read into the cache.

The plans of all stored procedures and triggers using the bound
objects are recompiled the next time they are run. If a database is
bound to the cache, this affects all the objects in the database.

Maintaining Data Cache Performance for Large I/O

When heap tables, clustered indexes, or nonclustered indexes have
just been created, they show optimal performance when large I/O is
being used. Over time, the effects of deletes, page splits, and page
deallocation and reallocation can increase the cost of I/O.

Ideal performance for an operation that performs large I/O while
doing a complete table scan is approximately:

For example, if a table has 624 data pages, and the cache is
configured for 16K I/O, SQL Server reads 8 pages per I/O. Dividing
624 by 8 equals 78 I/Os. If a table scan that performs large I/O
performs significantly more I/O than the optimum, you should
explore the causes.

Causes for High Large I/O Counts

There are several reasons why a query that performs large I/O might
require more reads than you anticipate:

• The cache used by the query has a 2K cache and many other
processes have brought pages from the table into the 2K cache. If
SQL Server is performing 16K I/O and finds that one of the pages
it needs to read is already in the 2K cache, it performs 2K I/O on
all of the other pages in the extent.

Number of pages in table
I/Os =

Number of pages per I/O

SQL Server Performance and Tuning Guide 15-31

Sybase SQL Server Release 11.0.x Maintaining Data Cache Performance for Large I/O

• The first extent on each allocation unit stores the allocation page,
so if a query needs to access all 255 pages on the extent, it must
perform 2K I/O on the 7 pages that share the extent with the
allocation page. The other 31 extents can be read using 16K I/O.
So, the minimum number of reads for an entire allocation unit is
always 38, not 32.

• In nonclustered indexes, an extent may store both leaf level pages
and pages from higher levels of the index. Regular index access,
finding pages by starting from the root and following index
pointers, always performs 2K I/O, so it is likely that these some
of the pages will be in the 2K cache during these index level scans.
the rest of the pages in the extent will therefore be read using 2K
I/O. Note that this applies only to nonclustered indexes and their
leaf pages, and does not apply to clustered index pages and the
data pages, which are always on separate extents.

• The table storage is fragmented, due to page-chain pointers that
cross extent boundaries and allocation pages. Figure 15-11 shows
a table that has become fragmented.

15-32 Memory Use and Performance

Maintaining Data Cache Performance for Large I/O Sybase SQL Server Release 11.0.x

Figure 15-11: Fragmentation on a heap table

The steps that lead to the memory use in the preceding figure are as
follows:

1. Table is loaded. The gray boxes indicate the original pages of the
table.

2. First additional page is allocated for inserts, indicated by the first
heavily striped box.

3. Deletes cause page 3 of the table, located in extent 40 to be
deallocated.

4. Another page is needed, page 2 is allocated and linked into the
page chain, as shown by the lightly striped box.

5. Two more pages are allocated, as shown by the other two
heavily striped boxes.

40

48

56

64

72

80

Page of original table

Unused page

Page emptied and
reallocated

Additional page

Next/previous
page pointers

SQL Server Performance and Tuning Guide 15-33

Sybase SQL Server Release 11.0.x Maintaining Data Cache Performance for Large I/O

Instead of 5 reads using 16K I/O with the MRU strategy, (because it’s
occupying 5 extents) the query does 7 I/Os. The query reads the
pages following the page pointers, so it:

• Performs a 16K I/O to read the extent 40, and performs logical
I/O on pages 1, 2, 4-8, skipping page 3.

• Performs physical I/O the extents, and then logical I/O on the
pages on extent 48, 56, and 64, in turn

• The second-to-last page in extent 64 points to page 3. In this small
table, of course, it is extremely likely that extent 40 is still in the
16K pool. It examines page 3, which then points to a page in
extent 64.

• The last page in extent 64 points to extent 72.

With a small table, the pages would still be in the data cache, so there
would be no extra physical I/O. But when the same kind of
fragmentation occurs in large tables, the I/O required rises,
especially if a large number of users are performing queries with
large I/O that could flush buffers out of the cache. This example sets
fillfactor to 80:

create unique clustered index title_id_ix
on titles(title_id)
with fillfactor = 80

Using sp_sysmon to Check Large I/O Performance

The sp_sysmon output for each data cache includes information that
can help you determine the effectiveness for large I/Os:

• “Large I/O Usage” on page 19-60 reports the number of large
I/Os performed and denied, and provides summary statistics.

• “Large I/O Detail” on page 19-61 reports the total number of
pages that were read into the cache by a large I/O, and the
number of pages that were actually accessed while in the cache.

Re-Creating Indexes to Eliminate Fragmentation

If I/O for heaps, range queries on clustered indexes, or covering
nonclustered indexes exceeds your expected values, use one of the
following processes:

• For heaps, either create and then drop a clustered index, or bulk
copy the data out, truncate the table, and copy it in again.

15-34 Memory Use and Performance

Speed of Recovery Sybase SQL Server Release 11.0.x

• For clustered indexes, drop and re-create the clustered index. All
nonclustered indexes will be re-created automatically.

• For covering nonclustered indexes, drop and re-create the index.

For clustered indexes and nonclustered indexes on tables that will
continue to receive updates, using a fillfactor to spread the data
slightly should slow fragmentation. This is described in the next
section. Fillfactor does not apply to heap tables.

Using Fillfactor for Data Cache Performance

If your table has a clustered index and queries frequently perform
table scans or return large ranges, you should be sure that it uses a
cache that allows 16K I/O in order to improve performance.

Tables with clustered indexes can become fragmented by page splits
from inserts and expensive direct updates and from the reallocation
of pages. Using fillfactor when you create your clustered index can
slow down this fragmentation.

When you create a clustered index without specifying a fillfactor, the
data pages (the leaf level of the clustered index) are completely filled.
If you specify a fillfactor of 80, the pages are 80-percent filled. So, for
example, instead of 20 rows on a page, there would be only 16, with
room for 4 more rows.

Speed of Recovery

As users modify data in SQL Server, only the transaction log is
written to disk immediately, in order to ensure recoverability. The
changed or “dirty” data and index pages stay in the data cache until
one of these events causes them to be written to disk:

• The checkpoint process wakes up, determines that the changed
data and index pages for a particular database need to be written
to disk, and writes out all dirty pages in each cache used by the
database. The combination of the setting for recovery interval and
the rate of data modifications on your server determines how
often the checkpoint process writes changed pages to disk.

• As pages move down the MRU/LRU chain in the cache, they
move into the buffer wash area of the cache, where dirty pages
are automatically written to disk.

SQL Server Performance and Tuning Guide 15-35

Sybase SQL Server Release 11.0.x Speed of Recovery

• SQL Server has spare CPU cycles and disk I/O capacity between
user transactions, and the housekeeper task uses this time to
write dirty buffers to disk.

• A user issues a checkpoint command.

This combination of write strategies has two major benefits:

• Many transactions may change a page in the cache or read the
page in the cache, but only one physical write is performed.

• SQL Server performs many physical writes at times when the I/O
does not cause contention with user processes.

Tuning the Recovery Interval

The default recovery interval on SQL Server is 5 minutes. Changing
the recovery interval can affect performance because it can impact
the number of times SQL Server writes pages to disk.

Housekeeper Task’s Effects on Recovery Time

SQL Server’s housekeeper task automatically begins cleaning dirty
buffers during the server’s idle cycles. If the task is able to flush all
active buffer pools in all configured caches, it wakes up the
checkpoint process. This may result in faster checkpoints and shorter
database recovery time.

Table 15-1: Effects of recovery interval on performance and recovery time

Setting Effects on Performance Effects on Recovery

Lower May cause unnecessary reads and
writes, and may lower
throughput. SQL Server will write
dirty pages to the disk more often,
and may have to read those pages
again very soon. Any checkpoint
I/O “spikes” will be smaller.

Recovery period will be very
short.

Higher Minimizes unnecessary I/O and
improves system throughput.
Checkpoint I/O spikes will be
higher.

Automatic recovery may take
substantial time on start-up.
SQL Server may have to re-
apply a large number of
transaction log records to the
data pages.

15-36 Memory Use and Performance

Auditing and Performance Sybase SQL Server Release 11.0.x

System Administrators can use the housekeeper free write percent
configuration parameter to tune or disable the housekeeper task.
This parameter specifies the maximum percentage by which the
housekeeper task can increase database writes. For information
about tuning this parameter, see “Configuring the Housekeeper
Task” on page 17-10.

For more information on tuning the housekeeper and the recovery
interval, see “Recovery Management” on page 19-63.

Auditing and Performance

Heavy auditing can affect performance:

• Audit records are written to a queue in memory and then to the
sybsecurity database. If the database shares a disk used by other
busy databases, it can slow performance.

• If the in-memory audit queue fills up, user processes that
generate audit records sleep.

Figure 15-12: The audit process

Sizing the Audit Queue

The size of the audit queue can be set by a System Security Officer.
The default configuration is:

• A single audit record requires a minimum of 22 bytes, up to a
maximum of 424 bytes. This means that a single data page stores
between 4 and 80 records.

• The default size of the audit queue is 100 records, requiring
approximately 42K. The minimum size of the queue is 1 record,
the maximum size is 65335 records.

There are trade-offs in sizing the audit queue. If the audit queue is
large, so that you do not risk having user processes sleep, you run the
risk of losing any audit records in memory if there is a system failure.
The maximum number of records that can be lost is the size of the

Audit
queue

Cache
insert
tableA

Sleeps if no
room on queue

sybsecurity

sysaudits

SQL Server Performance and Tuning Guide 15-37

Sybase SQL Server Release 11.0.x Auditing and Performance

audit queue. If security is your chief concern, keep the queue small.
If you can risk losing audit records and require high performance,
make the queue larger.

Increasing the size of the in-memory audit queue takes memory from
the total memory allocated to the data cache.

Figure 15-13: Trade-offs in auditing and performance

Auditing Performance Guidelines

• Choose the events that you audit. Heavy auditing slows overall
system performance. Audit what you need, and only what you
need.

• If possible, place the sysaudits database on its own device. If that
is not possible, place it on a device that is not used for your most
critical applications.

Audit
Audit queue size

If the system crashes,

If the audit queue is full,

sysaudits

record

this process will sleep until
space is available

these records are lost

15-38 Memory Use and Performance

Auditing and Performance Sybase SQL Server Release 11.0.x

SQL Server Performance and Tuning Guide 16-1

16 Networks and Performance 16.

Why Study the Network?

You should work with your network administrator to discover
potential network problems if:

• Process response times vary significantly for no apparent reason.

• Queries that return a large number of rows take longer than
expected.

• Operating system processing slows down during normal SQL
Server processing periods.

• SQL Server processing slows down during certain operating
system processing periods.

• A particular client process seems to slow all other processes
down.

Potential Network-Based Performance Problems

Some of the underlying problems that can be caused by networks
are:

• SQL Server uses network services poorly.

• The physical limits of the network have been reached.

• Processes are retrieving unnecessary data values, increasing
network traffic unnecessarily.

• Processes are opening and closing connections too often,
increasing network load.

• Processes are frequently submitting the same SQL transaction,
causing excessive and redundant network traffic.

• SQL Server does not have enough network memory available.

• SQL Server’s network packet sizes are not big enough to handle
the type of processing needed by certain clients.

Basic Questions About Networks and Performance

When looking at problems that you think might be network-related,
ask yourself these questions:

16-2 Networks and Performance

Why Study the Network? Sybase SQL Server Release 11.0.x

• Which processes usually retrieve a large amount of data?

• Are a large number of network errors occurring?

• What is the overall performance of the network?

• What is the mix of transactions being performed using SQL and
stored procedures?

• Are a large number of processes using the two-phase commit
protocol?

• Are replication services being performed on the network?

• How much of the network is being used by the operating system?

Techniques Summary

The major techniques available to improve network performance
are:

• Use small packets whenever possible

• Use larger packet sizes for tasks that perform large data transfers

• Use stored procedures to reduce overall traffic

• Filter data to avoid large transfers

• Isolate heavy network users from ordinary users

• Use client control mechanisms for special cases

Using sp_sysmon While Changing Network Configuration

Use sp_sysmon (or SQL Server Monitor) while making network
configuration changes to observe the effects on performance.

For more information about using sp_sysmon see Chapter 19,
“Monitoring SQL Server Performance with sp_sysmon.” Pay special
attention to the output in the “Network I/O Management” section.

SQL Server Performance and Tuning Guide 16-3

Sybase SQL Server Release 11.0.x How SQL Server Uses the Network

How SQL Server Uses the Network

All client/server communication occurs over a network via packets.
Packets contain a header and routing information as well as the data
they carry.

Figure 16-1: Client/server communications model

SQL Server was one of the first database systems to be built on a
network-based client/server architecture. Clients initiate a
connection to the server. The connection sends client requests and
server responses. Applications can have as many connections open
concurrently as they need to perform the required task. The protocol
used between the client and server is known as the Tabular Data
Stream (TDS), which forms the basis of communication for all Sybase
products.

Changing Network Packet Sizes

By default, all connections to SQL Server use a default packet size of
512 bytes. This works well for clients sending short queries and
receiving small result sets. However, some applications may benefit
from an increased packet size.

OLTP typically sends and receives large numbers of packets that
contain very little data. A typical insert statement or update
statement may be only 100 or 200 bytes. A data retrieval, even one
that joins several tables, may bring back only one or two rows of
data, and still not completely fill a packet. Applications using stored
procedures and cursors also typically send and receive small
packets.

Decision support applications often include large batches of
Transact-SQL, and return larger result sets.

Server

Client

Packets

16-4 Networks and Performance

Changing Network Packet Sizes Sybase SQL Server Release 11.0.x

In both OLTP and DSS environments, there may be special needs
such as batch data loads or text processing that can benefit from
larger packets.

Chapter 11, “Setting Configuration Parameters” in the System
Administration Guide describes how to change these configuration
parameters:

• The default network packet size, if most of your applications are
performing large reads and writes

• The max network packet size and additional network memory, which
provides additional memory space for large packet connections

Only a System Administrator can change these configuration
parameters.

Large Packet Sizes vs. Default-Size User Connections

SQL Server reserves enough space for all configured user
connections to log in at the default packet size, Large network
packets cannot steal that space. Connections that use the default
network packet size always have three buffers reserved to the
connection.

Connections that request large packet sizes must acquire the space
for their network I/O buffers from the additional network memory region.
If there is not enough space in this region to allocate three buffers at
the large packet size, connections use the default packed size instead.

Number of Packets Is Important

Generally, the number of packets being transferred is more
important than the size of the packets. “Network” performance also
includes the time needed by the CPU and operating system to
process a network packet. This per-packet overhead affects
performance the most. Larger packets reduce the overall overhead
costs and achieve higher physical throughput, provided you have
enough data that needs to be sent.

The following big transfer sources may benefit from large packet
sizes:

• Bulk copy

• readtext and writetext commands

• Large select statements

SQL Server Performance and Tuning Guide 16-5

Sybase SQL Server Release 11.0.x Changing Network Packet Sizes

Point of Diminishing Returns

There is always a point at which increasing the packet size will not
improve performance, and in fact it may decrease performance,
because the packets are not always full. Although there are analytical
methods for predicting that point, it is more common to vary the size
experimentally and plot the results. If such experiments are
conducted over a period of time and conditions, a packet size that
works well for a lot of processes can be determined. However, since
the packet size can be customized for every connection, specific
experiments for specific processes can be beneficial.

Figure 16-2: Packet sizes and performance

The curve can be significantly different between applications. Bulk
copy might fall into one pattern, while large image data retrievals
perform better at a different packet size.

Client Commands for Larger Packet Sizes

If testing shows that some specific applications can achieve better
performance with larger packet sizes, but that most applications
send and receive small packets, clients need to request the larger
packet size.

For isql and bcp, the command line arguments are as follows:

UNIX, Windows NT, and OS/2

isql -A size

Transfer
time

Packet size

Optimal
size

MaximumDefault

16-6 Networks and Performance

Changing Network Packet Sizes Sybase SQL Server Release 11.0.x

bcp -A size

Novell NetWare

load isql -A size

load bcp -A size

VMS

isql /tdspacketsize = size

bcp /tdspacketsize = size

For Open Client Client-Library™, use:

ct_con_prop(connection, CS_SET, CSPACKETSIZE,
$packetsize (sizeof(packetsize), NULL)

Evaluation Tools with SQL Server

The sp_monitor procedure reports on packet activity. This report
shows only the packet-related output:

...
packets received packets sent packet err
---------------- ------------ ----------
10866(10580) 19991(19748) 0(0)
...

You can also use these global variables:

• @@pack_sent, number of packets sent by SQL Server

• @@pack_received, number of packets received

• @@packet_errors, number of errors

These SQL statements show how the counters can be used:

select "before" = @@pack_sent

select * from titles

select "after" = @@pack_sent

Both sp_monitor and the global variables report all packet activity for
all users since the last restart of SQL Server.

SQL Server Performance and Tuning Guide 16-7

Sybase SQL Server Release 11.0.x Techniques for Reducing Network Traffic

Evaluation Tools Outside of SQL Server

Operating system commands also provide information about packet
transfers. See the documentation for your platform for more
information about these commands.

Techniques for Reducing Network Traffic

Server-Based Techniques for Reducing Traffic

Using stored procedures, views, and triggers can reduce network
traffic. These Transact-SQL tools can store large chunks of code on
the server so that only short commands need to be sent across the
network. If your applications send large batches of Transact-SQL to
SQL Server, converting them to use stored procedures can reduce
network traffic.

Clients should request only the rows and columns they need.

Using Stored Procedures to Reduce Network Traffic

Applications that send large batches of Transact-SQL can place less
load on the network if the SQL is converted to stored procedures.
Views can also help reduce the amount of network traffic.

Figure 16-3: Using procedures and views to reduce network traffic

 exec proc A

select *
from view_a

begin tran
 if ...
 delete ...
 else
 update...
 select...

16-8 Networks and Performance

Techniques for Reducing Network Traffic Sybase SQL Server Release 11.0.x

Ask for Only the Information You Need

Applications should request only the rows and columns they need,
filtering as much data as possible at the server. In many cases, this
can also reduce the disk I/O load.

Figure 16-4: Reducing network traffic by filtering data at the server

Fill Up Packets When Using Cursors

Open Client Client-Library Applications that use cursors can request
multiple rows for each fetch command:

ct_cursor(CT_CURSOR_ROWS)

To fetch multiple rows in isql, use the set cursor rows option.

Large Transfers

Large transfers simultaneously decrease overall throughput and
increase the average response time. If possible, large transfers should
be done during off-hours.

If large transfers are common, consider acquiring network hardware
that is suitable for such transfers.

Table 16-1: Network options

Type Characteristics

Token ring Token ring hardware responds better than Ethernet hardware
during periods of heavy use.

select * from authors

select au_lname, au_fname, phone from authors where au_id = ’1001’

SQL Server Performance and Tuning Guide 16-9

Sybase SQL Server Release 11.0.x Impact of Other Server Activities

Network Overload

Overloaded networks are becoming increasingly common as more
and more computers, printers, and peripherals are network
equipped. Network managers rarely detect a problem before
database users start complaining to their System Administrator.
Cooperate with your local network managers and be prepared to
provide them with your predicted or actual network requirements
when they are considering the addition of resources. Also, keep an
eye on the network and try to anticipate problems that result from
newly added equipment or application requirements. Remember,
network problems affect all the database clients.

Impact of Other Server Activities

You need to be aware of the impact of other server activity and
maintenance on network activity, especially:

• Two-phase commit protocol

• Replication processing

• Backup processing

These activities involve network communication, especially
replication processing and the two-phase commit protocol. Systems
that make extensive use of these activities may see network-related
problems. Accordingly, these activities should be done only as
necessary.

Try to restrict backup activity to times when other network activity is
low.

Login Protocol

A connection can be kept open and shared by various modules
within an application instead of being repeatedly opened and closed.

Fiber optic Fiber-optic hardware provides very high bandwidth, but is
usually too expensive to use throughout an entire network.

Separate
network

A separate network can be used to handle network traffic
between the highest volume workstations and SQL Server.

Table 16-1: Network options (continued)

Type Characteristics

16-10 Networks and Performance

Guidelines for Improving Network Performance Sybase SQL Server Release 11.0.x

Single User vs. Multiple Users

You must take the presence of other users into consideration before
trying to solve a database problem, especially if those users are using
the same network. Since most networks can transfer only one packet
at a time, many users may be delayed while a large transfer is in
progress. Such a delay may cause locks to be held longer, which
causes even more delays. When response time is “abnormally” high,
and normal tests indicate no problem, it could be because of other
users on the same network. In such cases, ask the user when the
process was being run, if the operating system was generally
sluggish, if other users were doing large transfers, and so on. In
general, consider multi-user impacts before digging deeper into the
database system to solve an abnormal response time problem.

Figure 16-5: Effects of long transactions on other users

Guidelines for Improving Network Performance

Choose the Right Packet Size for the Task

If most applications send and receive small amounts of data, with a
few applications performing larger transfers, here are some
guidelines:

• Keep default network packet size small.

Why is my short
transaction taking

so long???

SQL Server Performance and Tuning Guide 16-11

Sybase SQL Server Release 11.0.x Guidelines for Improving Network Performance

• Configure max network packet size and additional network memory just for
the applications that need it.

Figure 16-6: Match network packet sizes to application mix

If most of your applications send and receive large amounts of data,
increase default network packet size. This will result in fewer (but larger)
transfers.

All applications transfer large amounts of data

Most applications transfer small amounts of
data, a few applications perform large transfers

16-12 Networks and Performance

Guidelines for Improving Network Performance Sybase SQL Server Release 11.0.x

Isolate Heavy Network Users

Isolate heavy network users from ordinary network users by placing
them on a separate network.

Figure 16-7: Isolating heavy network users

In the “Before” diagram, clients accessing two different SQL Servers
use one network card. Clients accessing Servers A and B have to
compete over the network and past the network card.

In the “After” diagram, clients accessing Server A use one network
card and clients accessing Server B use another.

It would be even better to put your SQL Servers on different
machines.

Set tcp no delay on TCP Networks

By default, the configuration parameter tcp no delay is set to “off,”
meaning that the network performs packet batching. It briefly delays
sending partially full packets over the network. While this improves
network performance in terminal-emulation environments, it can
slow performance for SQL Server applications that send and receive
small batches. To disable packet batching, a System Administrator
sets the tcp no delay configuration parameter to 1.

Client accessing
Server A

Clients accessing
Server B

Before

After

A B

A B

Clients accessing
Server B

Client accessing
Server A

Single
network
card

Two
network
cards

SQL Server Performance and Tuning Guide 16-13

Sybase SQL Server Release 11.0.x Guidelines for Improving Network Performance

Configure Multiple Network Listeners

Use two (or more) ports listening for a single SQL Server. Front-end
software may be directed to any configured network ports by setting
the DSQUERY environment variable.

Using multiple network ports spreads out the network load and
eliminates or reduces network bottlenecks, thus increasing SQL
Server throughput.

Figure 16-8: Configuring multiple network ports

See your SQL Server installation and configuration guide for
information on configuring multiple network listeners.

Two
ports

16-14 Networks and Performance

Guidelines for Improving Network Performance Sybase SQL Server Release 11.0.x

SQL Server Performance and Tuning Guide 17-1

17 Using CPU Resources Effectively 17.

CPU Resources and Performance

This chapter discusses:

• How SQL Server handles tasks

• CPU usage information

• How the housekeeper task improves CPU utilization

• Application design considerations for multiple CPU machines

Task Management on SQL Server

Figure 17-1 shows the major subsystems of SQL Server and the SQL
Server environment:

• Clients

• Disks

• The operating system

• Multiple CPUs

• The shared executable code

• Resources in shared memory:

- Data caches

- The procedure cache

- Queues for network and disk I/O

- Structures that maintain locks

- The sleep queue, for processes that are waiting on a resource, or
that are idle

- The run queue, for processes that are ready to execute, or to
continue execution

17-2 Using CPU Resources Effectively

Task Management on SQL Server Sybase SQL Server Release 11.0.x

Figure 17-1: SQL Server task management in the SMP environment

The following steps explain how a process is managed on a server
with multiple processors. The process is very similar for single CPU
systems, except: that he network migration described in the first step
and steps 8 and 9 does not take place on single CPU machines. The
process of switching tasks, putting them to sleep while the wait for

Clients

Disks

Operating system

Registers
File descriptors

Engine 0
Registers
File descriptors

Engine 1
Registers
File descriptors

Engine 2

1

4 5 6 7

2 3

2
RUNNING

5
RUNNING

1
RUNNING

6

3 4

7

 Disk I/O

Lock sleep

Shared executable

D
I
S
K

N
E
T

Data caches

Procedure cache
Locks

Pending I/OsSleep queueRun queue

Shared memory

SQL Server Performance and Tuning Guide 17-3

Sybase SQL Server Release 11.0.x Task Management on SQL Server

disk or network I/O, and checking queues is handled by the single
CPU in same manner.

1. When a new user logs into SQL Server, Engine 0 handles the
login to establish packet size, language, character set, and other
login settings.

Once this is complete, Engine 0 determines which engine is
currently managing the smallest number of user connections.
The connection is migrated to that CPU by passing the file
descriptor. For this example, the task is assigned to Engine 1.

The task is then put to sleep, waiting for the client to send a
request.

2. Engine 1 checks the sleep queue once every clock tick looking for
incoming tasks.

3. When Engine 1 finds a command for the connection, it wakes up
the task and places it on the end of the run queue.

4. When the task reaches the head of the queue, any available
engine can begin execution. In this example, Engine 2 executes
the task.

5. Engine 2 takes the task, parses, and compiles it and begins
execution.

6. If the task needs to perform disk I/O, the I/O request is issued,
and the task sleeps again. (There are also other reasons why a
task is put to sleep, or yields the engine to other tasks.)

7. Once each clock tick, the pending I/O queue is checked to see if
the task’s I/O has completed. If so, the task is moved to the run
queue, and the next available engine resumes execution.

8. When the task needs to return results to the user, it must perform
the network write on Engine 1. So Engine 2 puts the tasks to
sleep on a network write.

9. As soon as the task that Engine 1 is executing yields or is put to
sleep, Engine 1’s scheduler checks to determine if it has any
network tasks pending.

10. Engine 1 issues the network writes, removing the data structures
from the network I/O queue.

11. When the write completes, the task gets woken up, and placed in
the run queue. When it reaches the head of the queue, it is
scheduled on the next available engine.

17-4 Using CPU Resources Effectively

Measuring CPU Usage Sybase SQL Server Release 11.0.x

In addition to the reasons for task switching described in the steps
above, such a physical and network I/O, tasks are switched off
engines for other reasons. The task switch information provided by
the sp_sysmon system procedure can help you develop a picture of
how tasks are using the CPU. See “Task Context Switches Due To” on
page 19-16.

Measuring CPU Usage

This section describes how to measure CPU usage on machines with
a single processor and on those with multiple processors.

➤ Note
Before measuring CPU usage, disable the housekeeper task to eliminate

its effect on these measurements.

Single CPU Machines

There is no correspondence between your operating system’s reports
on CPU usage and SQL Server’s internal “CPU busy” information. It
is normal for a SQL Server to exhibit very high CPU usage while
performing an I/O-bound task.

A multithreaded database engine is not allowed to block on I/O.
While the asynchronous disk I/O is being performed, SQL Server
services other user tasks that are waiting to be processed. If there are
no tasks to perform, it enters a busy-wait loop, waiting for the
completion of the asynchronous disk I/O. This low-priority busy-
wait loop can result in very high CPU usage but due to its low
priority, it is harmless.

Using sp_monitor to See CPU Usage

Use sp_monitor to see the percentage of time SQL Server uses the CPU
during an elapsed time interval:

SQL Server Performance and Tuning Guide 17-5

Sybase SQL Server Release 11.0.x Measuring CPU Usage

 last_run current_run seconds
 ------------------- ------------------- -------
 May 19 1995 4:34PM May 19 1995 4:35PM 20

cpu_busy io_busy idle
 ------------------ ------------------ -------------
 658(7)-35% 0(0)-0% 87986(12)-60%

 packets_received packets_sent packet_errors
 ------------------ ------------------ -------------
 9202(4) 3595(5) 0(0)

 total_read total_write total_errors connections
 ------------- ------------- ------------- -----------
 5639(972) 77647(425) 0(0) 51(0)

For more information about sp_monitor, see the SQL Server Reference
Manual.

Using sp_sysmon

The “Kernel Utilization” section displays how busy the engine was
during the sample period. The percentage in this output is based on
the time that CPU was allocated to SQL Server, it is not a percentage
of the total sample interval.

The “CPU Yields by Engine” section displays information about how
often the engine yielded to the operating system during the interval:

Operating System Commands and CPU Usage

Operating system commands for displaying CPU usage are covered
in the SQL Server installation and configuration guide.

If your operating system tools show that CPU usage is above 85
percent most of the time, consider a multi-CPU environment or off-
loading some work to another SQL Server.

Multiple CPU Machines

Under SQL Server’s SMP (symmetric multiprocessing) architecture,
any engine can handle any server task and use any CPU. See “SQL
Server Task Management for SMP” on page 10-4 of the System
Administration Guide for a brief description of the process and

17-6 Using CPU Resources Effectively

Measuring CPU Usage Sybase SQL Server Release 11.0.x

information about the System Administration tasks and tuning
issues for managing SMP configurations.

Determining When to Configure Additional Engines

When determining whether to add additional engines, the major
factors to examine are:

• Load on existing engines

• Contention for resources such as locks on tables and pages and
cache spinlocks

• Response time

If the load on existing engines is above 80 percent, adding an
additional engine should improve response time, unless contention
for resources is high, or adding an engine causes contention.

Before configuring more engines, use sp_sysmon to establish a
baseline. Look particularly at the following lines or sections in the
output that may reveal points of contention:

• “Logical Lock Contention” on page 19-18

• “Address Lock Contention” on page 19-18

• “ULC Semaphore Requests” on page 19-30

• “Log Semaphore Requests” on page 19-31

• “Page Splits” on page 19-36

• “Deadlock Percentage” on page 19-42

• “Spinlock Contention” on page 19-54

• “I/Os Delayed By” on page 19-68

After increasing the number of engines, run sp_sysmon again under
similar load conditions, and check “Engine Busy Utilization” and the
contention points listed above.

Measuring CPU Usage from the Operating System

When you measure the CPU usage for SQL Server using operating
system utilities:

• The percentage of time SQL Server uses CPU during an elapsed
time interval is a reflection of a multiple CPU power processing
request.

SQL Server Performance and Tuning Guide 17-7

Sybase SQL Server Release 11.0.x Distributing Network I/O Across All Engines

• If CPU usage is at or near 100 percent most of the time, consider
adding more CPUs to the hardware configuration.

The cpu_busy percentage indicates SQL Server CPU processing
during a time interval for the number of engines configured. It is not
a direct reflection of CPU usage.

Distributing Network I/O Across All Engines

On SMP systems that support network affinity migration, SQL
Server distributes network I/O operations to each engine on a per-
connection basis. Network affinity migration is the process of
moving network I/O from one engine to another. During login, SQL
Server selects an engine to handle network I/O for the user
connection’s tasks. The tasks run network I/O on that engine
(network affinity) until the connection is terminated.

Distributing network I/O on more engines than just engine 0
provides these benefits:

• It reduces the performance and throughput bottlenecks that
occur due to the increased load on engine 0 (to perform all the
network I/O) and due to other engines waiting for engine 0.

• It renders SQL Server more symmetric by allowing any engine to
handle user connections.

• It increases the overall number of user connections that SQL
Server can handle as you add more engines.

• It distributes the network I/O load among its engines more
efficiently by migrating network affinity to the engine with the
lightest load.

In general, SQL Server’s network performance scales as the number
of engines is increased. Because a task’s network I/O is assigned to
one engine, SQL Server provides better performance results when
processing small tasks from many user connections than when
processing large tasks from a few connections.

Enabling Engine-to-CPU Affinity

By default, there is no affinity between CPUs and engines on SQL
Server. You may see slight performance gains in high-throughput
environments by affinitying engines to CPUs.

17-8 Using CPU Resources Effectively

Enabling Engine-to-CPU Affinity Sybase SQL Server Release 11.0.x

Not all operating systems support CPU affinity. The command is
silently ignored on systems that do not support engine-to-CPU
affinity. The dbcc tune command must be re-issued each time SQL
Server is restarted. Each time CPU affinity is turned on or off, SQL
Server prints a message in the errorlog indicating the engine and
CPU numbers affected:

Engine 1, cpu affinity set to cpu 4.

Engine 1, cpu affinity removed.

The syntax is:

dbcc tune(cpuaffinity, start_cpu [, on| off])

start_cpu specifies the CPU to bind engine 0 to. Engine 1 gets bound
to the CPU numbered (start_cpu + 1) and so on. Engine n gets bound
to ((start_cpu + n) % number_of_cpus). CPU numbers are in the range
0 through the number of CPUs minus one.

On a 4 CPU machine with CPUs numbered 0 through 3, on a 4 engine
SQL Server, this command:

dbcc tune(cpuaffinity, 2, "on")

causes the following affinity:

On the same machine, with a 3 engine SQL Server, the same
command causes the following affinity:

In this example, CPU 1 will not be used by SQL Server.

To disable CPU affinity, specify -1 in place of start_cpu, and use off for
the setting:

Engine CPU

0 2 (the start_cpu number specified)

1 3

2 0

3 1

Engine CPU

0 2

1 3

2 0

SQL Server Performance and Tuning Guide 17-9

Sybase SQL Server Release 11.0.x How the Housekeeper Task Improves CPU Utilization

dbcc tune(cpuaffinity, -1, off)

You can enable CPU affinity without changing the value of start_cpu
by using -1 and on for the setting:

dbcc tune(cpuaffinity, -1, on)

The default value for start_cpu is 1 if CPU affinity has not been
previously set.

To specify a new value of start_cpu without changing the on/off
setting, use:

dbcc tune (cpuaffinity, start_cpu)

If CPU affinity is currently enabled and the new start_cpu is different
from its previous value, SQL Server change the affinity for each
engine.

If CPU affinity is currently off, SQL Server notes the new start_cpu
value, and the new affinity takes effect the next time CPU affinity is
turned on.

To see the current value and whether affinity is enabled, use:

dbcc tune(cpuaffinity, -1)

This command only prints current settings to the errorlog, and does
not change the affinity or the settings.

You can check the network I/O load across all SQL Server engines
using the sp_sysmon system procedure. See “Network I/O
Management” on page 19-72.

To determine whether your platform supports network affinity
migration, consult your operating system documentation or the SQL
Server installation and configuration guide.

How the Housekeeper Task Improves CPU Utilization

When SQL Server has no user tasks to process, a housekeeper task
automatically begins writing dirty buffers to disk. Because these
writes are done during the server’s idle cycles, they are known as
free writes. They result in improved CPU utilization and a decreased
need for buffer washing during transaction processing. They also
reduce the number and duration of checkpoint “spikes”, times when
the checkpoint process causes a short, sharp rise in disk writes.

17-10 Using CPU Resources Effectively

How the Housekeeper Task Improves CPU Utilization Sybase SQL Server Release 11.0.x

➤ Note
The housekeeper task does not improve performance for read-only caches

or for data that fits entirely within a cache.

Side Effects of the Housekeeper Task

If the housekeeper task can flush all active buffer pools in all
configured caches, it wakes up the checkpoint task. The checkpoint
task determines whether it can checkpoint the database. The
additional checkpoints that occur as a result of the housekeeper
process may improve recovery speed for the database.

In applications that repeatedly update the same database page, the
housekeeper task may initiate some database writes that are not
necessary. Although these writes occur only during the server’s idle
cycles, they may be unacceptable on systems with overloaded disks.

Configuring the Housekeeper Task

System Administrators can use the housekeeper free write percent
configuration parameter to control the side effects of the
housekeeper task. This parameter specifies the maximum percentage
by which the housekeeper task can increase database writes. Valid
values range from 0–100.

By default, the housekeeper free write percent parameter is set to 1. This
allows the housekeeper task to continue to wash buffers as long as
the database writes do not increase by more than 1 percent. The work
done by the housekeeper task at the default parameter setting results
in improved performance and recovery speed on most systems.

Changing the Percentage by Which Writes Can Increase

Use the sp_configure system procedure to change the percentage by
which database writes can increase as a result of the housekeeper
process:

sp_configure "housekeeper free write percent",
maximum_increase_in_database_writes

For example, issue the following command to stop the housekeeper
task from working when the frequency of database writes reaches 5
percent above normal:

SQL Server Performance and Tuning Guide 17-11

Sybase SQL Server Release 11.0.x Multiprocessor Application Design Guidelines

sp_configure "housekeeper free write percent", 5

Disabling the Housekeeper Task

You may want to disable the housekeeper task in order to establish a
controlled environment in which only specified user tasks are
running. To disable the housekeeper task, set the value of the
housekeeper free write percent parameter to 0:

sp_configure "housekeeper free write percent", 0

Allowing the Housekeeper Task to Work Continuously

To allow the housekeeper task to work continuously, regardless of
the percentage of additional database writes, set the value of the
housekeeper free write percent parameter to 100:

sp_configure "housekeeper free write percent", 100

Checking Housekeeper Effectiveness

The “Recovery Management” section of sp_sysmon shows checkpoint
information to help you determine the effectiveness of the
housekeeper. See “Recovery Management” on page 19-63.

Multiprocessor Application Design Guidelines

The multiprocessor SQL Server is compatible with uniprocessor SQL
Server. Applications that run on uniprocessor servers should run on
SMP servers as well. Increased throughput on multiprocessor SQL
Servers makes it more likely that multiple processes may try to
access a data page simultaneously. It is especially important to
adhere to the principles of good database design to avoid contention.
Following are some of the application design considerations that are
especially important in an SMP environment.

Multiple Indexes

The increased throughput of SMP may result in increased lock
contention when tables with multiple indexes are updated. Allow no
more than two or three indexes on any table that will be updated
often.

17-12 Using CPU Resources Effectively

Multiprocessor Application Design Guidelines Sybase SQL Server Release 11.0.x

For information on index maintenance effects on performance, see
“Index Management” on page 19-32.

Managing Disks

The additional processing power of the SMP product may increase
demands on the disks. Therefore, it is best to spread data across
multiple devices for heavily used databases. See “Disk I/O
Management” on page 19-66 for information on sp_sysmon reports on
disk utilization.

Adjusting the fillfactor for create index Commands

You may need to adjust the fillfactor in create index commands. Because
of the added throughput with multiple processors, setting a lower
fillfactor may temporarily reduce contention for the data and index
pages.

Setting max_rows_per_page

The use of fillfactor places fewer rows on data and index pages when
the index is created, but the fillfactor is not maintained. Over time, data
modifications can increase the number of rows on a page.

For tables and indexes that experience contention, max_rows_per_page
provides a permanent means to limit the number of rows on data and
index pages.

The sp_helpindex system procedure reports the current
max_rows_per_page setting of indexes. Use the sp_chgattribute system
procedure to change the max_rows_per_page setting.

Setting max_rows_per_page to a lower value does not reduce index
splitting, and, in most cases, increases the number of index page
splits. It can help reduce other lock contention on index pages. If
your problem is index page splitting, careful choice of fillfactor is a
better option.

Transaction Length

Transactions that include many statements or take a long time to run
may result in increased lock contention. Keep transactions as short as

SQL Server Performance and Tuning Guide 17-13

Sybase SQL Server Release 11.0.x Multiprocessor Application Design Guidelines

possible, and avoid holding locks—especially exclusive or update
locks—while waiting for user interaction.

Temporary Tables

Temporary tables (tables in tempdb) do not cause contention, because
they are associated with individual users and are not shared.
However, if multiple user processes use tempdb for temporary
objects, there can be some contention on the system tables in tempdb.
“Temporary Tables and Locking” on page 14-10 for information on
ways to reduce contention.

17-14 Using CPU Resources Effectively

Multiprocessor Application Design Guidelines Sybase SQL Server Release 11.0.x

SQL Server Performance and Tuning Guide 18-1

18 Maintenance Activities and
Performance 18.

Maintenance Activities That Affect Performance

These maintenance activities can affect performance:

• Creating a database

• Creating indexes

• Dumps and loads

• Bulk copy operations

• Database consistency checks

• Update statistics

The common-sense approach is to perform maintenance tasks,
whenever possible, at times when your SQL Server usage is low. This
chapter will help you determine what kind of performance impacts
these maintenance activities have on applications and on overall
SQL Server performance.

Creating or Altering a Database

Creating and altering a database is I/O intensive, and other I/O
intensive operations may suffer. When you create a database, SQL
Server copies the model database to the new database and then
initializes all the allocation pages, the first page of each 256-page
allocation unit.

The following procedures can help speed database creation or
minimize its impact on other processes:

• Use the for load option to create database if you are restoring a
database, that is, if you are getting ready to issue a load database
command.

When you create a database without for load, it copies model, and
then initializes all of the allocation units. When you use for load, it
postpones zeroing the allocation units until the load is complete.
Then it initializes only the untouched allocation units. If you are
loading a very large database dump, this can save a large
amount of time.

• Create databases during off-hours if possible.

18-2 Maintenance Activities and Performance

Creating Indexes Sybase SQL Server Release 11.0.x

create database and alter database perform concurrent parallel I/O on up
to six devices at a time when clearing database pages. If you specify
more than six devices, the first six writes take place in parallel, and as
the I/O to each device completes, the 16K buffers are used for
remaining devices.

The following example names eight separate devices:

create database hugedb
 on dev1 = 500,
 dev2 = 600,
 dev3 = 600,
 dev4 = 500,
 dev5 = 500,
 dev6 = 500
log on logdev1 = 500,
 logdev2 = 500

➤ Note
When create database copies model, it uses 2K I/O.

A single set of six buffers is available for large I/O by create database,
alter database, dbcc checkalloc, and the portion of load database that zeros
pages. If all six buffers are in use when another process issues one of
these commands, the second command performs 2K I/O.

Creating Indexes

Creating indexes affects performance by locking other users out of a
table. The type of lock depends on the index type:

• Creating a clustered index requires an exclusive table lock,
locking out all table activity. Since rows in a clustered index are
arranged in order by the index key, create clustered index reorders
data pages.

• Creating a nonclustered index requires a shared table lock,
locking out update activity.

Configuring SQL Server to Speed Sorting

These configuration parameters can increase the speed of sort
operations during create index operations:

SQL Server Performance and Tuning Guide 18-3

Sybase SQL Server Release 11.0.x Creating Indexes

• number of extent i/o buffers configures the number of extents (8 data
pages) that can be used for I/O during creating indexes. These
buffers are used for intermediate results.

• number of sort buffers configures how many buffers can be used in
cache to hold pages from the input tables.

• sort page count specifies the maximum amount of memory a sort
operation can use. These pages store rows in memory during the
sort.

Full information on these parameters is available in Chapter 11,
“Setting Configuration Parameters,” of the System Administration
Guide.

Extent I/O Buffers

If you do not configure number of extent i/o buffers, SQL Server performs
2K I/O while it creates indexes. This parameter allows SQL Server to
use 16K buffers for reading and writing intermediate and final
results. Each buffer you configure requires 16K of memory.

Configuring number of extent i/o buffers has these impacts:

• Increasing this parameter decreases the memory available for the
procedure and data caches.

• Only one user at a time can use extent I/O buffers when creating
an index. Other users who start create index commands are
restricted to page I/O.

• Setting number of extent I/O buffers to 10 works well with small
configurations.

• Settings above 100 yield only marginal benefits.

If you have ample memory and perform frequent index
maintenance, configure extent I/O buffers on a permanent basis. In
other cases, it makes sense to schedule index maintenance for off-
hours. Then, I/O extents can be allocated for optimum performance.
When the index maintenance is completed, deallocate the extra I/O
extents, and resume normal memory allocations.

➤ Note
You need to shut down and restart SQL Server in order to change the

number of extents allocated.

18-4 Maintenance Activities and Performance

Creating Indexes Sybase SQL Server Release 11.0.x

Increasing the Number of Sort Buffers and Sort Pages

If you are creating very large indexes at a time when other SQL
Server activity is at a minimum, setting number of sort buffers and sort
page count can greatly increase create index performance. Both of these
configuration parameters are dynamic and use memory from the
default data cache for each sort operation.

◆ WARNING!
If you use these parameters, be sure to dump the database soon after
the index is created to ensure the compatibility of database dumps.

Dumping the Database After Creating an Index

When you create an index, SQL Server writes the create index
transaction and the page allocations to the transaction log, but does
not log the actual changes to the data and index pages. If you need to
recover a database, and you have not dumped it since you created
the index, the entire create index process is executed again while
loading transaction log dumps.

If you perform routine index re-creations (for example, to maintain
the fillfactor in the index), you may want to schedule these operations
at a time shortly before a routine database dump.

Creating a Clustered Index on Sorted Data

If your data has already been sorted and is in the desired clustered
index order, use the with sorted_data option when creating indexes.
This saves the time needed for the actual sort phase.

➤ Note
The sorted data option still requires space of approximately 120 percent of

the table size to copy the data and store the index pages.

SQL Server Performance and Tuning Guide 18-5

Sybase SQL Server Release 11.0.x Backup and Recovery

Backup and Recovery

All SQL Server backups are performed by a Backup Server. The
backup architecture uses a client/server paradigm, with SQL Servers
as clients to a Backup Server.

Local Backups

SQL Server sends the local Backup Server instructions, via remote
procedure calls, telling the Backup Server which pages to dump or
load, which backup devices to use, and other options. Backup Server
performs all the disk I/O. SQL Server does not read or send dump
and load data, just instructions.

Remote Backups

Backup Server also supports backups to remote machines. For
remote dumps and loads, a local Backup Server performs the disk
I/O related to the database device and sends the data over the
network to the remote Backup Server, which stores it on the dump
device.

Online Backups

Backups can be done while a database is active. Clearly, such
processing affects other transactions, but do not be afraid to back up
critical databases as often as necessary to satisfy the reliability
requirements of the system.

See Chapter 18, “Developing a Backup and Recovery Plan,” in the
System Administration Guide for a complete discussion of backup and
recovery strategies.

Using Thresholds to Prevent Running Out of Log Space

If your database has limited log space, and you occasionally hit the
last-chance threshold, install a second threshold that provides
ample time to perform a transaction log dump. Running out of log
space has severe performance impacts. Users cannot execute any
data modification commands until log space has been freed.

18-6 Maintenance Activities and Performance

Bulk Copy Sybase SQL Server Release 11.0.x

Minimizing Recovery Time

You can help minimize recovery time, the time required to reboot
SQL Server, by changing the recovery interval configuration parameter.
The default value of 5 minutes per database works for most
installations. Reduce this value only if functional requirements
dictate a faster recovery period. It can increase the amount of I/O
required. See “Tuning the Recovery Interval” on page 15-35.

Recovery speed may also be affected by the value of the housekeeper
free write percent configuration parameter. The default value of this
parameter allows the server’s housekeeper task to write dirty buffers
to disk during the server’s idle cycles, as long as disk I/O does not
increase by more than 20 percent. See “Configuring the Housekeeper
Task” on page 17-10 for more information on tuning this parameter.

Recovery Order

During recovery, system databases are recovered first. Then, user
databases are recovered in order by database ID.

Bulk Copy

Bulk copy into a table on SQL Server runs fastest when there are no
indexes or triggers on the table. When you are running fast bulk
copy, SQL Server performs reduced logging. It does not log the
actual changes to the database, only the allocation of pages. And,
since there are no indexes to update, it saves all the time updating
indexes for each data insert, and the logging of the changes to the
index pages.

To use fast bulk copy, select into/bulkcopy option must be set for the
database with sp_dboption. Remember to turn the option off after the
bulk copy operation completes.

During fast bulk copy, rules are not enforced but defaults are
enforced.

Since changes to the data are not logged, you should perform a dump
database soon after a fast bulk copy operation. Performing a fast bulk
copy in a database blocks the use of dump transaction, since the
unlogged data changes cannot be recovered from the transaction log
dump.

SQL Server Performance and Tuning Guide 18-7

Sybase SQL Server Release 11.0.x Bulk Copy

Batches and Bulk Copy

If you specify a batch size during a fast bulk copy, each new batch
must start on a new data page, since only the page allocations, and
not the data changes, are logged during a fast bulk copy. Copying
1000 rows with a batch size of 1 requires 1000 data pages and 1000
allocation records in the transaction log. If you are using a small
batch size to help detect errors in the input file, you may want to
choose a batch size that corresponds to the numbers of rows that fit
on a data page.

Slow Bulk Copy

If a table has indexes or triggers, a slower version of bulk copy is
automatically used. For slow bulk copy:

• The select into/bulkcopy option does not have to be set.

• Rules are not enforced and triggers are not fired, but defaults are
enforced.

• All data changes are logged, as well as the page allocations.

• Indexes are updated as rows are copied in, and index changes are
logged.

Improving Bulk Copy Performance

Other ways to increase bulk copy performance are:

• Set the trunc log on chkpt option to keep the transaction log from
filling up. If your database has a threshold procedure that
automatically dumps the log when it fills, you will save the
transaction dump time. Remember that each batch is a separate
transaction, so if you are not specifying a batch size, setting trunc
log on chkpt will not help.

• Find the optimal network packet size. See “Client Commands for
Larger Packet Sizes” on page 16-5.

Replacing the Data in a Large Table

If you are replacing all the data in a large table, use the truncate table
command instead of the delete command. truncate table performs
reduced logging. Only the page deallocations are logged. delete is
completely logged, that is, all the changes to the data are logged.

18-8 Maintenance Activities and Performance

Database Consistency Checker Sybase SQL Server Release 11.0.x

The steps are:

1. Truncate the table

2. Drop all indexes on the table

3. Load the data

4. Re-create the indexes

Adding Large Amounts of Data to a Table

When you are adding 10 percent to 20 percent or more to a large
table, drop the nonclustered indexes, load the data, and then re-
create nonclustered indexes.

For very large tables, leaving the clustered index in place may be
necessary due to space constraints. SQL Server must make a copy of
the table when it creates a clustered index. In many cases, once tables
become very large, the time required to perform a slow bulk copy
with the index in place is less than the time to perform a fast bulk
copy and re-create the clustered index.

Use Partitions and Multiple Copy Processes

If you are loading data into a table without a clustered index, you can
create partitions on the heap table and split the batch of data into
multiple batches, one for each partition you create. See “Improving
Insert Performance with Partitions” on page 13-12.

Impacts on Other Users

Bulk copying large tables in or out may affect other users’ response
time. If possible:

• Schedule bulk copy operations for off-hours.

• Use fast bulk copy, since it does less logging and less I/O.

Database Consistency Checker

It is important to run database consistency checks periodically with
dbcc. If you back up a corrupt database, the backup is useless. But
dbcc affects performance, since dbcc must acquire locks on the objects
it checks.

SQL Server Performance and Tuning Guide 18-9

Sybase SQL Server Release 11.0.x Database Consistency Checker

See “Comparing the dbcc Commands” on page 17-16 of the System
Administration Guide for information about dbcc and locking. Also see
“Scheduling Database Maintenance at Your Site” on page 17-17 for
more information about how to minimize the effects of dbcc on user
applications.

18-10 Maintenance Activities and Performance

Database Consistency Checker Sybase SQL Server Release 11.0.x

SQL Server Performance and Tuning Guide 19-1

19 Monitoring SQL Server Performance
with sp_sysmon 19.

Introduction

This chapter describes output from sp_sysmon, a system procedure
that produces SQL Server performance data for the following
categories of SQL Server system activities:

• Kernel Utilization 19-8

• Task Management 19-14

• Transaction Profile 19-22

• Transaction Management 19-27

• Index Management 19-32

• Lock Management 19-40

• Data Cache Management 19-46

• Procedure Cache Management 19-61

• Memory Management 19-63

• Recovery Management 19-63

• Disk I/O Management 19-66

• Network I/O Management 19-72

This chapter explains sp_sysmon output and gives suggestions for
interpreting its output and deducing possible implications. sp_sysmon
output is most valuable when you use it together with a good
understanding of your unique SQL Server environment and its
specific mix of applications. The output has little relevance on its
own.

◆ WARNING!
sp_sysmon and SQL Server Monitor use the same internal counters.
sp_sysmon resets these counters to 0, producing erroneous output for
SQL Server Monitor when it is used simultaneously with sp_sysmon.
Also, starting a second execution of sp_sysmon while an earlier
execution is running clears all of the counters, so the first iteration
reports will be inaccurate.

19-2 Monitoring SQL Server Performance with sp_sysmon

Invoking sp_sysmon Sybase SQL Server Release 11.0.x

➤ Note
sp_sysmon will not produce accurate results on pre-11.0 SQL Servers

because many of the internal counters sp_sysmon uses were added in SQL

Server release 11.0. In addition, the uses and meanings of many pre-

existing counters have changed.

Invoking sp_sysmon

To invoke sp_sysmon, execute the following command using isql:

sp_sysmon interval

where interval is an integer time in minutes from 1 to 10.

An sp_sysmon report contains hundreds of lines of output. Use isql
input and output redirect flags to save the output to a file. See the
SQL Server utility programs manual for more information on isql.

Using sp_sysmon to View Performance Information

When you invoke sp_sysmon, it clears all accumulated data from
internal counters and enters a waitfor loop until the user-specified
time interval elapses. During the interval, various SQL Server
processes increment the counters. At the end of the interval, the
procedure reads the counters, prints out the report, and stops
executing.

SQL Server Performance and Tuning Guide 19-3

Sybase SQL Server Release 11.0.x Using sp_sysmon to View Performance Information

The flow diagram below shows the algorithm.

Figure 19-1: sp_sysmon execution algorithm

sp_sysmon contributes 5 to 7 percent overhead while it runs on a single
CPU server, and more on multiprocessor servers. The amount of
overhead increases with the number of CPUs.

When to Use sp_sysmon

You can run sp_sysmon both before and after tuning SQL Server
configuration parameters to gather data for comparison. This data
gives you a basis for performance tuning and lets you observe the
results of configuration changes.

Use sp_sysmon when the system exhibits the behavior you want to
investigate. For example, if you are interested in finding out how the
system behaves under typically loaded conditions, run sp_sysmon
when conditions are normal and typically loaded. In this case, it does
not make sense to run sp_sysmon for ten minutes starting at 7:00 pm,

Start

Clear Counters

waitfor

Read Counters

Print Output

Interval
elapsed?

Yes

No

Stop

19-4 Monitoring SQL Server Performance with sp_sysmon

Using sp_sysmon to View Performance Information Sybase SQL Server Release 11.0.x

before the batch jobs begin and after most of the day’s OLTP users
have left the site. In this example, it would be a good idea to run
sp_sysmon both during the normal OLTP load and during batch jobs.

In many tests, it is best to start the applications, and then start
sp_sysmon when caches have had a chance to fill. If you are trying to
measure capacity, be sure that the amount of work you give the
server to do keeps it busy for the duration of the test. Many of the
statistics, especially those that measure data per second, can look
extremely low if the server is idle during part of the sample period.

In general, sp_sysmon produces valuable information under the
following circumstances:

• Before and after changing cache configuration or pool
configuration

• Before and after certain sp_configure changes

• Before and after adding new queries to your application mix

• Before and after increasing or reducing the number of SQL Server
engines

• When adding new disk devices and assigning objects to them

• During peak periods, to look for contention

• During stress tests to evaluate a SQL Server configuration for a
maximum expected application load

• When performance seems slow or behaves abnormally

It can also help with micro-level understanding of certain queries or
applications during development. Some examples are:

• Working with indexes and updates, you can see if certain updates
reported as deferred_varcol are resulting direct vs. deferred
updates.

• Checking caching behavior of particular queries or mix of
queries.

How to Use the Data

sp_sysmon can give you information about SQL Server system
behavior both before and after tuning. It is important to study the
entire report to understand the full impact of the changes you make.

There are several reasons for this. Sometimes removing one
performance bottleneck reveals another (see Figure 19-2). It is also
possible that your tuning efforts might improve performance in one

SQL Server Performance and Tuning Guide 19-5

Sybase SQL Server Release 11.0.x Using sp_sysmon to View Performance Information

area, while actually causing a performance degradation in another
area.

Figure 19-2: Eliminating one bottleneck reveals another

In addition to pointing out areas for tuning work, sp_sysmon output is
valuable for determining when further tuning will not pay off in
additional performance gains. It is just as important to know when to
stop tuning SQL Server, or when the problem resides elsewhere, as it
is to know what to tune.

Other information can contribute to interpreting sp_sysmon output:

• Information on the configuration parameters in use, from
sp_configure or the configuration file

• Information on the cache configuration and cache bindings, from
sp_cacheconfig and sp_helpcache

• Information on disk devices, segments, and the objects stored on
them

Reading sp_sysmon Output

sp_sysmon displays performance statistics in a consistent tabular
format. For example, in an SMP environment running nine SQL
Server engines, the output typically looks like this:

Disk QueueingLog I/OLogical Lock

Tuning

Contention

Bottlenecks:

Increased
ULC size

Adjusted
fillfactor

Spread busy tables
across devices

Performance

19-6 Monitoring SQL Server Performance with sp_sysmon

Using sp_sysmon to View Performance Information Sybase SQL Server Release 11.0.x

Engine Busy Utilization:
 Engine 0 98.8 %
 Engine 1 98.8 %
 Engine 2 97.4 %
 Engine 3 99.5 %
 Engine 4 98.7 %
 Engine 5 98.7 %
 Engine 6 99.3 %
 Engine 7 98.3 %
 Engine 8 97.7 %
 ----------- --------------- ----------------
 Summary: Total: 887.2 % Average: 98.6 %

Rows

Most rows represent a specific type of activity or event, such as
acquiring a lock or executing a stored procedure. When the data is
related to CPUs, the rows show performance information for each
SQL Server engine in the SMP environment. The output above
shows nine SQL Server engines. Often, when there are groups of
related rows, the last row is a summary of totals and an average.

The sp_sysmon report indents some rows to show that one category is
a subcategory of another. In the following example, “Found in Wash”
is a subcategory of “Cache Hits”, which is a subcategory of “Cache
Searches”:

Cache Searches
 Cache Hits 202.1 3.0 12123 100.0 %
 Found in Wash 0.0 0.0 0 0.0 %
 Cache Misses 0.0 0.0 0 0.0 %
 ------------------------- --------- --------- -------
 Total Cache Searches 202.1 3.0 12123

Many rows are not printed when the “count” value is 0.

Columns

Unless otherwise stated, the columns represent the following
performance statistics:

• “per sec”– average per second during sampling interval

• “per xact” – average per committed transaction during sampling
interval

• “count” – total number during the sample interval

• “% of total” – varies depending on context, as explained for each
occurrence

SQL Server Performance and Tuning Guide 19-7

Sybase SQL Server Release 11.0.x Using sp_sysmon to View Performance Information

Interpreting sp_sysmon Data

When tuning SQL Server, the fundamental measures of success
appear as increases in throughput and reductions in application
response time. Unfortunately, tuning SQL Server cannot be reduced
to printing these two values. In most cases, your tuning efforts must
take an iterative approach involving a comprehensive overview of
SQL Server activity, careful tuning and analysis of queries and
applications, and monitoring locking and access on an object-by-
object basis.

sp_sysmon is a tool that provides a comprehensive overview of system
performance. Use SQL Server Monitor to pinpoint contention on a
per-object basis.

Per Second and Per Transaction Data

Weigh the importance of the per second and per transaction data on
the environment and the category you are measuring. The per
transaction data is generally more meaningful in benchmarks or in
test environments where the workload is well defined.

It is likely that you will find per transaction data more meaningful
for comparing test data than per second data alone because in a
benchmark test environment, there is usually a well-defined number
of transactions, making comparison straightforward. Per transaction
data is also useful for determining the validity of percentage results.

Percent of Total and Count Data

The meaning of the “% of total” data varies depending on the context
of the event and the totals for the category. When interpreting
percentages, keep in mind that they are often useful for
understanding general trends, but they can be misleading when
taken in isolation. For example, 50 percent of 200 events is much
more meaningful than 50 percent of 2 events.

The “count” data is the total number of events that occurred during
the sample interval. You can use count data to determine the validity
of percentage results.

Per Engine Data

In most cases, per engine data for a category will show a fairly even
balance of activity across all engines. There are a few exceptions:

19-8 Monitoring SQL Server Performance with sp_sysmon

Sample Interval and Time Reporting Sybase SQL Server Release 11.0.x

• If you have fewer processes than CPUs, some of the engines will
show no activity.

• If most processes are doing fairly uniform activity, such as simple
inserts and short selects, and one process performs some I/O
intensive operation such as a large bulk copy, you will see
unbalanced network and disk I/O.

Total or Summary Data

Summary rows provide an overview of SQL Server engine activity
by reporting totals and averages.

Be careful when interpreting averages because they can give false
impressions of true results when the data are skewed. For example,
if you have one SQL Server engine working 98 percent of the time
and another that is working 2 percent of the time, a 50 percent
average can be misleading.

Sample Interval and Time Reporting

The heading of an sp_sysmon report includes the date, the time the
sample interval started, “Statistics Cleared at”, the time it completed,
“Statistics Sampled at”, and the duration of the sample interval.

==
 Sybase SQL Server 11 System Performance Monitor v1.0 Beta
==

Run Date Dec 20, 1995
Statistics Cleared at 16:05:40
Statistics Sampled at 16:06:40
Sample Interval 1 min.

Kernel Utilization

“Kernel Utilization” reports on SQL Server activities. It tells you how
busy SQL Server engines were during the time that the CPU was
available to SQL Server, how often the CPU yielded to the operating
system, the number of times that the engines checked for network
and disk I/O, and the average number of I/Os they found waiting at
each check.

SQL Server Performance and Tuning Guide 19-9

Sybase SQL Server Release 11.0.x Kernel Utilization

Sample Output for Kernel Utilization

The following sample shows sp_sysmon output for “Kernel
Utilization” in an environment with eight SQL Server engines.

Kernel Utilization

 Engine Busy Utilization:
 Engine 0 98.5 %
 Engine 1 99.3 %
 Engine 2 98.3 %
 Engine 3 97.2 %
 Engine 4 97.8 %
 Engine 5 99.3 %
 Engine 6 98.8 %
 Engine 7 99.7 %
 ----------- --------------- ----------------
 Summary: Total: 789.0 % Average: 98.6 %

 CPU Yields by Engine per sec per xact count % of total
 ------------------------- --------- --------- ------- ----------
 0.0 0.0 0 n/a
 Network Checks
 Non-Blocking 79893.3 1186.1 4793037 100.0 %
 Blocking 1.1 0.0 67 0.0 %
 ------------------------- --------- --------- -------
 Total Network I/O Checks 79894.4 1186.1 4793104
 Avg Net I/Os per Check n/a n/a 0.00169 n/a

 Disk I/O Checks
 Total Disk I/O Checks 94330.3 1400.4 5659159 n/a
 Checks Returning I/O 92881.0 1378.9 5572210 98.5 %
 Avg Disk I/Os Returned n/a n/a 0.00199 n/a

In this example, the CPU did not yield to the operating system, so
there are no detail rows.

Engine Busy Utilization

“Engine Busy Utilization” reports the percentage of time the SQL
Server Kernel is busy executing tasks on each SQL Server engine
(rather than time spent idle). The summary row gives the total and
the average active time for all engines combined.

The values reported here may differ from CPU usage values reported
by operating system tools. When SQL Server has no tasks to process,
it enters a loop that regularly checks for network I/O, completed
disk I/Os, and tasks on the run queue. Operating system commands

19-10 Monitoring SQL Server Performance with sp_sysmon

Kernel Utilization Sybase SQL Server Release 11.0.x

to check CPU activity may show high usage for a SQL Server engine
because they are measuring the looping activity, while “Engine Busy
Utilization” does not include time spent looping—it is considered
idle time.

One measurement that cannot be made from inside SQL Server is the
percentage of time that SQL Server had control of the CPU versus the
time the CPU was in use by the operating system. Check your
operating system documentation for the correct commands.

See “Engine Busy Utilization” on page 19-9 for an explanation of
why operating system commands report different information on
utilization than SQL Server does.

If you want to reduce the time that SQL Server spends checking for
I/O while idle, you can lower the sp_configure parameter runnable
process search count. This parameter specifies the number of times a
SQL Server engine loops looking for a runnable task before yielding
the CPU. For more information, see “runnable process search count”
on page 11-91 of the System Administration Guide.

“Engine Busy Utilization” measures how busy SQL Server engines
were during the CPU time they were given. If the engine is available
to SQL Server for 80 percent of a ten-minute sample interval, and
“Engine Busy Utilization” was 90 percent, it means that SQL Server
was busy for 7 minutes and 12 seconds and idle for 48 seconds as
Figure 19-3 shows.

Figure 19-3: How SQL Server spends its available CPU time

This category can help you decide whether there are too many or too
few SQL Server engines. SQL Server’s high scalability is due to
tunable mechanisms that avoid resource contention. By checking
sp_sysmon output for problems and tuning to alleviate contention,
response time can remain high even at “Engine Busy” values in the
80 to 90 percent range. If values are consistently very high (over 90
percent), it is likely that response time and throughput could benefit
from an additional engine.

Sample Interval = 10 minutes

CPU Available to SQL ServerCPU Available to OS

BUSY IDLE

SQL Server Performance and Tuning Guide 19-11

Sybase SQL Server Release 11.0.x Kernel Utilization

The “Engine Busy” values are averages over the sample interval, so
very high averages indicate that engines may be 100 percent busy
during part of the interval. When engine utilization is extremely
high, the housekeeper process writes few or no pages out to disk
(since it runs only during idle CPU cycles.) This means that a
checkpoint will find many pages that need to be written to disk, and
the checkpoint process, a large batch job, or a database dump is likely
to send CPU usage to 100 percent for a period of time, causing a
perceptible dip in response time.

If “Engine Busy Utilization” percentages are consistently high, and
you want to improve response time and throughput by adding SQL
Server engines, carefully check for increased resource contention
after adding each engine.

CPU Yields by Engine

“CPU Yields by Engine” reports the number of times each SQL
Server engine yielded to the operating system. “% of total” data is the
percentage of times a SQL Server engine yielded as a percentage of
the combined yields for all SQL Server engines.

“Total CPU Yields” reports the combined data over all SQL Server
engines.

If “Engine Busy Utilization” data indicates low engine utilization,
use “CPU Yields by Engine” to determine whether “Engine Busy
Utilization” data reflects a truly inactive SQL Server engine or one
that is frequently starved out of the CPU by the operating system.

When a SQL Server engine is not busy, it yields to the CPU after a
period of time related to the runnable process search count parameter. A
high value for “CPU Yields by Engine” indicates that the SQL Server
engine yielded voluntarily.

If you also see that “Engine Busy Utilization” is a low value, then the
SQL Server engine really is inactive, as opposed to being starved out.
The actual numbers that represents “high” and “low” values depend
on the specific operating environment. See “runnable process search
count” on page 11-91 of the System Administration Guide for more
information.

Network Checks

“Network Checks” includes information about blocking and non-
blocking network I/O checks, the total number of I/O checks for the

19-12 Monitoring SQL Server Performance with sp_sysmon

Kernel Utilization Sybase SQL Server Release 11.0.x

interval, and the average number of network I/Os per network
check.

SQL Server has two ways to check for network I/O: blocking and
non-blocking modes.

Non-Blocking

“Non-Blocking” reports the number of times SQL Server performed
non-blocking network checks. With non-blocking network I/O
checks, a SQL Server engine checks the network for I/O and
continues processing whether or not it found I/O waiting.

Blocking

After a SQL Server engine completes a task, it loops waiting for the
network to deliver a runnable task. After a certain number of loops
(determined by the sp_configure parameter runnable process search count),
the SQL Server engine goes to sleep after a blocking network I/O.

When a SQL Server engine yields to the operating system because
there are no tasks to process, it wakes up once per clock tick to check
for incoming network I/O. If there is I/O, the operating system
blocks the engine from active processing until the I/O completes.

If a SQL Server engine has yielded and is doing blocking checks, it
might continue to sleep for a period of time after a network packet
arrives. This period of time is referred to as the latency period.

You can reduce the latency period by increasing the runnable process
search count parameter so the SQL Server engine loops for longer
periods of time. See “runnable process search count” on page 11-91
of the System Administration Guide for more information.

Total Network I/O Checks

“Total Network I/O Checks” reports the number of times SQL
Server engines poll the sockets for incoming and outgoing packets.
This category is helpful when you use it with “CPU Yields by
Engine”.

When a SQL Server engine is idle, it loops while checking for
network packets. If “Network Checks” is low and “CPU Yields by
Engine” is high, the engine could be yielding too often and not
checking the network sockets frequently enough. If the system can
afford the overhead, it might be acceptable to yield less often.

SQL Server Performance and Tuning Guide 19-13

Sybase SQL Server Release 11.0.x Kernel Utilization

Average Network I/Os per Check

“Avg Net I/Os per Check” reports the average number of network
I/Os (both sends and receives) per check for all SQL Server engine
checks that took place during the sample interval.

The sp_configure parameter i/o polling process count specifies the
maximum number of processes that SQL Server runs before the
scheduler checks for disk and/or network I/O completions. Tuning
i/o polling process count affects both the response time and throughput
of SQL Server. See “i/o polling process count” on page 11-79 of the
System Administration Guide.

If SQL Server engines check frequently, but retrieves network I/O
infrequently, you can try reducing the frequency for network I/O
checking.

Disk I/O Checks

This section reports on the total number of disk I/O checks, and the
number of checks returning I/O.

Total Disk I/O Checks

“Total Disk I/O Checks” reports the number of times a SQL Server
engine checked disk I/O.

When a task needs to perform I/O, the SQL Server engine running
that task immediately issues an I/O request and puts the task to
sleep waiting for the I/O to complete. The SQL Server engine
processes other tasks, if any, but also uses a scheduling loop to check
for completed I/Os. When the engine finds completed I/Os, it
moves the task from the sleep queue to the run queue.

Checks Returning I/O

“Checks Returning I/O” is the number of times that a requested I/O
had completed when a SQL Server engine checked for disk I/O.

For example, if a SQL Server engine checks for expected I/O 100,000
times, this average indicates the percentage of time that there
actually was I/O pending. If, of those 100,000 checks, I/O was
pending 10,000 times, then 10 percent of the checks were effective,
while the other 90 percent were overhead. However, you should also
check the average number of I/Os returned per check, and how busy

19-14 Monitoring SQL Server Performance with sp_sysmon

Task Management Sybase SQL Server Release 11.0.x

the engines were during the sample period. If the sample includes
idle time, or the I/O traffic is bursty, it is possible that during the
busy period, a high percentage of the checks were returning I/O.

If the results in this category seem low or high, you can configure i/o
polling process count so that the SQL Server engine checks less or more
frequently. See “i/o polling process count” on page 11-79 in the
System Administration Guide.

Average Disk I/Os Returned

“Avg Disk I/Os Returned” reports the average number of disk I/Os
returned over all SQL Server engine checks combined.

Increasing the amount of time that SQL Server engines wait between
checks could result in better throughput because SQL Server engines
can spend more time processing if they spend less time checking for
I/O. However, you should verify this for your environment. Use the
sp_configure parameter i/o polling process count to increase the length of
the checking loop. See “i/o polling process count” on page 11-79 in
the System Administration Guide.

Task Management

“Task Management” provides information on opened connections,
task context switches by engine, and task context switches by cause.

“Task Context Switches Due To” provides an overview of the reasons
that tasks were switched off engines. The possible performance
problems show in this section can be investigated by checking other
sp_sysmon output, as indicated below in the sections that describe the
causes.

Sample Output for Task Management

The following sample shows sp_sysmon output for the “Task
Management” categories.

SQL Server Performance and Tuning Guide 19-15

Sybase SQL Server Release 11.0.x Task Management

Task Management per sec per xact count % of total
 ------------------------- --------- --------- ------- ----------

 Connections Opened 0.0 0.0 0 n/a

 Task Context Switches by Engine
 Engine 0 94.8 0.8 5730 10.6 %
 Engine 1 94.6 0.8 5719 10.6 %
 Engine 2 92.8 0.8 5609 10.4 %
 Engine 3 105.0 0.9 6349 11.7 %
 Engine 4 101.8 0.8 6152 11.4 %
 Engine 5 109.1 0.9 6595 12.2 %
 Engine 6 102.6 0.9 6201 11.4 %
 Engine 7 99.0 0.8 5987 11.1 %
 Engine 8 96.4 0.8 5830 10.8 %
 ------------------------- --------- --------- -------
 Total Task Switches: 896.1 7.5 54172

 Task Context Switches Due To:
 Voluntary Yields 69.1 0.6 4179 7.7 %
 Cache Search Misses 56.7 0.5 3428 6.3 %
 System Disk Writes 1.0 0.0 62 0.1 %
 I/O Pacing 11.5 0.1 695 1.3 %
 Logical Lock Contention 3.7 0.0 224 0.4 %
 Address Lock Contention 0.0 0.0 0 0.0 %
 Log Semaphore Contention 51.0 0.4 3084 5.7 %
 Group Commit Sleeps 82.2 0.7 4971 9.2 %
 Last Log Page Writes 69.0 0.6 4172 7.7 %
 Modify Conflicts 83.7 0.7 5058 9.3 %
 I/O Device Contention 6.4 0.1 388 0.7 %
 Network Packet Received 120.0 1.0 7257 13.4 %
 Network Packet Sent 120.1 1.0 7259 13.4 %
 SYSINDEXES Lookup 0.0 0.0 0 0.0 %
 Other Causes 221.6 1.8 13395 24.7 %%

Connections Opened

“Connections Opened” reports the number of connections opened to
SQL Server. It includes any type of connection, such as client
connections and remote procedure calls. It only counts connections
that were started during the sample interval. Connections that were
established before the interval started are not counted here.

This data is provides a general understanding of the SQL Server
environment and the work load during the interval. This data can
also be useful for understanding application behavior—it can help
determine if applications repeatedly open and close connections or
perform multiple transactions per connection.

19-16 Monitoring SQL Server Performance with sp_sysmon

Task Management Sybase SQL Server Release 11.0.x

Task Context Switches by Engine

“Task Context Switches by Engine” reports on the number of times
each SQL Server engine switched context from one user task to
another. “% of total” is the percentage of SQL Server engine task
switches for each SQL Server engine as a percentage of the total
number of task switches for all SQL Server engines combined.

“Total Task Switches” summarizes task-switch activity for all
engines on SMP servers. You can use “Total Task Switches” to
observe the effect of controlled reconfigurations. You might
reconfigure a cache or add memory if tasks appear to block on cache
search misses and to be switched out often. Then, check the data to
see if tasks tend to be switched out more or less often.

Task Context Switches Due To

“Task Context Switches Due To” reports the number of times that
SQL Server switched context for a number of common reasons. “% of
total” is the percentage of times the context switch was due to each
specific cause as a percentage of the total number of task context
switches for all SQL Server engines combined.

“Task Context Switches Due To” data can help you identify the
problem and give you clues about how to fix it. For example, if most
of the task switches are caused by physical I/O, try minimizing
physical I/O, by adding more memory or reconfiguring caches.

However, if lock contention causes most of the task switches, check
the“Lock Management” on page 19-40.

Voluntary Yields

“Voluntary Yields” is the number of times a task completed or
yielded after running for the configured amount of time. The SQL
Server engine switches context from the task that yielded to another
task.

The configuration variable time slice sets the amount of time that a
process can run. A CPU-intensive task that does not switch out due
to other causes yields the CPU at certain “yield points” in the code,
in order to allow other processes a turn on the CPU. See “time slice”
on page 11-97 of the System Administration Guide for more
information.

SQL Server Performance and Tuning Guide 19-17

Sybase SQL Server Release 11.0.x Task Management

A high number of voluntary yields indicates that there is not much
contention. If this is consistently the case, consider increasing the time
slice configuration parameter.

Cache Search Misses

“Cache Search Misses” is the number of times that a task was
switched out because a needed page was not in cache and had to be
read from disk. For data and index pages, the task is switched out
while the physical read is performed.

See “Data Cache Management” on page 19-46 for more information
about the cache-related parts of the sp_sysmon output.

System Disk Writes

“Disk Writes” reports the number of times a task was switched out
because it needed to perform a disk write or because it needed to
access a page that was being written by another process, such as the
housekeeper or the checkpoint process.

Most SQL Server writes happen asynchronously, but processes sleep
during writes for page splits, recovery, and OAM page writes.

If this number seems high, check “Page Splits” on page 19-36 to see if
the problem is caused by data pages and index page splits. In other
cases, you cannot affect this value by tuning.

I/O Pacing

SQL Server paces the number of disk writes that it issues in order to
keep from flooding the disk I/O subsystems during certain
operations that need to perform large amounts of I/O. Checkpoints
and transaction commits that write a large number of log pages are
two examples. The task is switched out and sleeps until the batch of
writes completes, and then wakes up and issues another batch.

By default, the number of writes per batch is set to 10. You may want
to increase the number of writes per batch if:

• You have a high-throughput, high-transaction environment with
a large data cache

• Your system is not I/O bound

Valid values are from 1 to 50. This command sets the number of
writes per batch to 20:

19-18 Monitoring SQL Server Performance with sp_sysmon

Task Management Sybase SQL Server Release 11.0.x

dbcc tune (maxwritedes, 20)

Logical Lock Contention

“Logical Lock Contention” reports the number of times a task was
switched out because of contention over database locks, such as table
and page locks.

Investigate lock contention problems by checking the transaction
detail and lock management sections of the report. Refer to
“Transaction Detail” on page 19-24 and “Lock Management” on
page 19-40. Check to see if your queries are doing deferred and direct
expensive updates, which can cause additional index locks. Refer to
“Updates” on page 19-26.

For additional help on locks and lock contention, check the following
sources:

• “Types of Locks in SQL Server” on page 11-6 provides
information about types of page and table locks.

• “Reducing Lock Contention” on page 11-29 provides pointers on
reducing lock contention.

• Chapter 6, “Indexing for Performance,” provides information on
indexes and query tuning. In particular, use indexes to ensure
that updates and deletes to not lead to table scans and exclusive
table locks.

Address Lock Contention

“Address Lock Contention” reports the number of times a task was
switched out because of memory address locks. SQL Server acquires
address locks on index pages, OAM pages and allocation pages,
during updates, and sometimes on data pages when page splits are
performed. Address lock contention tends to have more implications
in a high throughput environment.

Log Semaphore Contention

“Log Semaphore Contention” is the number of times a task was
switched out because it needed to acquire the transaction log
semaphore held by another task. This applies to SMP systems only.

High contention for the log semaphore could indicate that the user
log cache (ULC) is too small. See “Transaction Management” on page
19-27. If you decide that the ULC is correctly sized, then think about

SQL Server Performance and Tuning Guide 19-19

Sybase SQL Server Release 11.0.x Task Management

how to minimize the number of log writes by making application
changes.

Another area to check is disk queueing on the disk used by the
transaction log. See “Disk I/O Management” on page 19-66. Also
check “Engine Busy Utilization” on page 19-9. If engine utilization is
a low value and response time is within acceptable limits, consider
reducing the number of engines. Fewer engines reduces contention
by decreasing the number of tasks trying to access the log
simultaneously.

Group Commit Sleeps

“Group Commit Sleeps” reports the number of times a task
performed a transaction commit and was put to sleep until the log
was written to disk. Compare this value to the committed
transactions information described in “Committed Transactions” on
page 19-23. If the transaction rate is low, a higher percentage of tasks
wait for “Group Commit Sleeps”.

If there are a significant number of tasks resulting in “Group Commit
Sleeps” and the log I/O size is greater than 2K, a smaller log I/O size
can help to reduce commit time by causing more frequent page
flushes. Flushing the page wakes up tasks sleeping on the group
commit.

In high throughput environments, a large log I/O size is very
important to prevent problems in disk queueing on the log device. A
high percentage of group commit sleeps should not be regarded as a
problem.

Other factors that can affect group commit sleeps are the size of the
run queue and the speed of the disk device on which the log resides.

When a task commits, its log records are flushed from its user log
cache to the current page of the transaction log in cache. If the page
(or pages, if a large log I/O size is configured) is not full, the task is
switched out and placed on the end of the run queue. The task wakes
up when:

• Another process fills the log page(s), and flushes the log

• When the task reaches the head of the run queue, and no other
process has flushed the log page.

For more information on setting the log I/O size, see “Choosing the
I/O Size for the Transaction Log” on page 15-25.

19-20 Monitoring SQL Server Performance with sp_sysmon

Task Management Sybase SQL Server Release 11.0.x

Last Log Page Writes

“Last Log Page Writes” is the number of times a task was switched
out because it was put to sleep while writing the last log page.

The task switched out because it was responsible for writing the last
log page as opposed to sleeping while waiting for some other task to
write the log page, as described in “Group Commit Sleeps” on page
19-19.

If this value is high, check “Avg # Writes per Log Page” on page 19-32
to see if SQL Server is repeatedly rewriting the same last page to the
log. If the log I/O size is greater than 2K, reducing the log I/O size
might reduce the number of unneeded log writes.

Modify Conflicts

For certain operations, SQL Server uses a special light weight
protection mechanism to gain exclusive access to a page without
using actual page locks. Access to some system tables and dirty reads
on a page are two examples. These processes need exclusive access to
the page, even though they do not modify it.

I/O Device Contention

“I/O Device Contention” is the number of times a task was put to
sleep while waiting for a semaphore for a particular device.

When a task needs to perform physical I/O, SQL Server fills out the
block I/O structure and links it to a per-engine I/O queue. If two
SQL Server engines request an I/O structure from the same device at
the same time, one of them sleeps while it waits for the semaphore it
needs.

If there is significant contention for I/O device semaphores, try
reducing it by redistributing the tables across devices or by adding
devices and moving tables and indexes to them. See “Spreading Data
Across Disks to Avoid I/O Contention” on page 13-4 for more
information.

Network Packet Received

When the cause for task switching is “Network Packet Received,” it
is due to one of two reasons:

SQL Server Performance and Tuning Guide 19-21

Sybase SQL Server Release 11.0.x Task Management

• A task received part of a multi-packet tabular data stream (TDS)
batch and was switched out waiting for the client to send the next
TDS packet of the batch, or

• A task completely finished processing a command and put into a
receive sleep state waiting to receive the next command or packet
from the client.

If “Network Packet Received” is the cause for the task switch, see
“Network I/O Management” on page 19-72 for more information
about network I/O. Also, you can configure the network packet size
for all connections or allow certain connections to log in using larger
packet sizes. See “Changing Network Packet Sizes” on page 16-3 and
“default network packet size” on page 11-48 in the System
Administration Guide.

Network Packet Sent

“Network Packet Sent” reports the number of times a task went into
a send sleep state waiting for the network to send each TDS packet.

The TDS model determines that there can be only one outstanding
TDS packet per connection at any one point in time. This means that
the task sleeps after each packet it sends.

If there is a lot of data to send, and the task is sending many small
packets (512 bytes per packet), the task could end up sleeping a
number of times. The TDS data packet size is configurable, and
different clients can request different packet sizes. For more
information, see “Changing Network Packet Sizes” on page 16-3 and
“default network packet size” on page 11-48 in the System
Administration Guide.

If “Network Packet Sent” is a major cause for task switching, see
“Network I/O Management” on page 19-72 for more information.

SYSINDEXES Lookup

“SYSINDEXES Lookup” shows the number of times a task went to
sleep waiting for another task to release control of a page in the
sysindexes table. This data is meaningful for SMP environments only.

19-22 Monitoring SQL Server Performance with sp_sysmon

Transaction Profile Sybase SQL Server Release 11.0.x

Other Causes

This section reports the number of tasks switched out for any reasons
not described above. In a well-tuned server, this value will rise as
tunable sources of task switching are reduced.

Transaction Profile

This category reports on transaction-related activities, including the
number of data modification transactions, user log cache (ULC)
activity, and transaction log activity.

Sample Output for Transaction Profile

The following sample shows sp_sysmon output for the “Transaction
Profile” section.

Transaction Profile

 Transaction Summary per sec per xact count % of total
 ------------------------- --------- --------- ------- ----------
 Committed Xacts 120.1 n/a 7261 n/a

 Transaction Detail per sec per xact count % of total
 ------------------------- --------- --------- ------- ----------
 Inserts
 Heap Table 120.1 1.0 7260 100.0 %
 Clustered Table 0.0 0.0 0 0.0 %
 ------------------------- --------- --------- -------
 Total Rows Inserted 120.1 1.0 7260 25.0 %

 Updates
 Deferred 0.0 0.0 0 0.0 %
 Direct In-place 360.2 3.0 21774 100.0 %
 Direct Cheap 0.0 0.0 0 0.0 %
 Direct Expensive 0.0 0.0 0 0.0 %
 ------------------------- --------- --------- -------
 Total Rows Updated 360.2 3.0 21774 75.0 %

 Deletes
 Deferred 0.0 0.0 0 0.0 %
 Direct 0.0 0.0 0 0.0 %
 ------------------------- --------- --------- -------
 Total Rows Deleted 0.0 0.0 0 0.0 %

SQL Server Performance and Tuning Guide 19-23

Sybase SQL Server Release 11.0.x Transaction Profile

Transaction Summary

“Transaction Summary” reports on committed transactions, rolled
back transactions, statistics for all transactions combined, and
multidatabase transactions.

Committed Transactions

“Committed Xacts” is the number of transactions committed during
the sample interval. “% of total” is the percentage of transactions that
committed as a percentage of all transactions that started (both
committed and rolled back).

This includes transactions that meet explicit, implicit, and ANSI
definitions for “committed”, as described here:

• The implicit transaction is composed simply of data modification
commands such as insert, update, or delete. In the implicit model, if
you do not specify a begin transaction statement, SQL Server
interprets every operation as a separate transaction. An explicit
commit transaction statement is not required. For example:

1> insert …
2> go
1> insert …
2> go
1> insert …
2> go

is counted as three transactions.

• The explicit transaction encloses data modification commands
within begin transaction and commit transaction statements and counts
the number of transactions by the number of commit statements.
For example:

1> begin transaction
2> insert …
3> insert …
4> insert …
5> commit transaction
6> go

is counted as one transaction.

• In the ANSI transaction model, any select or data modification
command starts a transaction, but a commit transaction statement
must complete the transaction. sp_sysmon counts the number of
transactions by the number of commit transaction statements. For
example:

19-24 Monitoring SQL Server Performance with sp_sysmon

Transaction Profile Sybase SQL Server Release 11.0.x

1> insert …
2> insert …
3> insert …
4> commit transaction
5> go

is counted as one transaction.

This number reflects a larger number of transactions than the actual
number that took place during the sample interval if there were
transactions that started before the sample interval began and
completed during the interval. If transactions do not complete
during the interval, “Total # of Xacts” does not count them. In Figure
19-4, both T1 and T2 are counted, but transaction T3 is not.

Figure 19-4: How transactions are counted

For more information, see “Transactions” in the SQL Server reference
manual.

How to Count Multidatabase Transactions

Multidatabase transactions are also counted. For example, a
transaction that modifies 3 databases is counted as 3 transactions.

Multidatabase transactions incur more overhead than single
database transactions: they require more log records, more ULC
flushes, and involve two-phase commit between the databases.

You can improve performance by reducing the number of
multidatabase transaction whenever possible. If you divided a
logical database in two because of contention on the log in SQL
Server release 10.0, consider putting it back together for System 11.

Transaction Detail

“Transaction Detail” gives statistical detail about data modification
operations by type. The work performed by rolled back transactions

T1

T2
T3

Interval

SQL Server Performance and Tuning Guide 19-25

Sybase SQL Server Release 11.0.x Transaction Profile

is included in the output below, although the transaction is not
counted in the number of transactions.

See “Update Mode Messages” on page 8-9 for more information on
deferred and direct inserts, updates, and deletes.

Inserts

”Inserts” provides detailed information about the types of inserts
taking place on heap tables (including partitioned heap tables),
clustered tables, and all inserts with respect to the total number of
insert, update, and delete operations.

This figure does not include fast bulk copy inserts, because these are
written directly to the data pages and to disk without the normal
insert and logging mechanisms.

Inserts on Heap Tables

“Heap Tables” is the number of row inserts that took place on heap
tables—all tables that do not have a clustered index. This includes:

• Unpartitioned heap tables

• Partitioned heap tables

• select into commands and inserts into work tables

• Slow bulk copy inserts into heap tables

The “% of total” column is the percentage of row inserts into heap
tables as a percentage of the total number of inserts.

If there are a large number of inserts to heap tables, determine if
these inserts are generating contention. Check the sp_sysmon report
for data on last page locks on heaps in “Lock Detail” on page 19-42.
If there appears to be a contention problem, SQL Server Monitor can
help you figure out which tables are involved.

In many cases, creating a clustered index that randomizes insert
activity solves the performance problems for heaps. In other cases,
you might need to establish partitions on an unpartitioned table or
increase the number of partitions on a partitioned table. For more
information, see Chapter 4, “How Indexes Work” and “Improving
Insert Performance with Partitions” on page 13-12.

Inserts on Clustered Tables

“Clustered Table” reports the number of row inserts to tables with
clustered indexes. The “% of total” column is the percentage of row

19-26 Monitoring SQL Server Performance with sp_sysmon

Transaction Profile Sybase SQL Server Release 11.0.x

inserts to tables with clustered indexes as a percentage of the total
number of rows inserted.

Inserts into clustered tables can lead to page splitting. Check “RID
Updates from Clustered Split” on page 19-35 and “Page Splits” on
page 19-36.

Total Rows Inserted

“Total Rows Inserted” reports on all row inserts to heap tables and
clustered tables combined. It gives the average number of all inserts
per second, the average number of all inserts per transaction, and the
total number of inserts. “% of total” shows the percentage of rows
inserted compared to the total number of rows affected by data
modification operations.

Updates

“Updates” reports the number of deferred and direct row updates.
“% of total” is the percentage of each type of update as a percentage
of the total number of row updates. sp_sysmon reports on the
following types of updates:

• Deferred

• Direct In-place

• Direct Cheap

• Direct Expensive

For a description of update types, see “Optimizing Updates” on page
7-40.

Direct updates incur less overhead than deferred updates and are
generally faster because they limit the number of log scans, reduce
locking, save traversal of index B-trees (reducing lock contention),
and can save I/O because SQL Server does not have to refetch pages
to perform modification based on log records.

If there is a high percentage of deferred updates, see “Optimizing
Updates” on page 7-40.

Total Rows Updated

“Total Rows Updated” reports on all deferred and direct updates
combined. The “% of total” is the percentage of rows updated, based
on all rows modified.

SQL Server Performance and Tuning Guide 19-27

Sybase SQL Server Release 11.0.x Transaction Management

Deletes

“Deletes” reports the number of deferred and direct row deletes.
“% of total” is the percentage of each type of delete as a percentage of
the total number of deletes. sp_sysmon reports on deferred and direct
deletes.

Total Rows Deleted

The “Total Rows Deleted” row reports on all deferred and direct
deletes combined. “% of total” shows the percentage of deleted rows
as a compared to all rows inserted, updated or deleted.

Transaction Management

“Transaction Management” reports on transaction management
activities, including user log cache (ULC) flushes to transaction logs,
ULC log records, ULC semaphore requests, log semaphore requests,
transaction log writes, and transaction log allocations.

Sample Output for Transaction Management

The following sample shows sp_sysmon output for the “Transaction
Management” categories.

Transaction Management

 ULC Flushes to Xact Log per sec per xact count % of total
 ------------------------- --------- --------- ------- ----------
 by Full ULC 0.0 0.0 0 0.0 %
 by End Transaction 120.1 1.0 7261 99.7 %
 by Change of Database 0.0 0.0 0 0.0 %
 by System Log Record 0.4 0.0 25 0.3 %
 by Other 0.0 0.0 0 0.0 %
 ------------------------- --------- --------- -------
 Total ULC Flushes 120.5 1.0 7286

 ULC Log Records 727.5 6.1 43981 n/a
 Max ULC Size n/a n/a 532 n/a

ULC Semaphore Requests
 Granted 1452.3 12.1 87799 100.0 %
 Waited 0.0 0.0 0 0.0 %

19-28 Monitoring SQL Server Performance with sp_sysmon

Transaction Management Sybase SQL Server Release 11.0.x

 ------------------------- --------- --------- -------
 Total ULC Semaphore Req 1452.3 12.1 87799

 Log Semaphore Requests
 Granted 69.5 0.6 4202 57.7 %
 Waited 51.0 0.4 3084 42.3 %
 ------------------------- --------- --------- -------
 Total Log Semaphore Req 120.5 1.0 7286

 Transaction Log Writes 80.5 0.7 4867 n/a
 Transaction Log Alloc 22.9 0.2 1385 n/a
 Avg # Writes per Log Page n/a n/a 3.51408 n/a

ULC Flushes to Transaction Log

“ULC Flushes to Xact Log” is the total number of times the user log
caches (ULCs) were flushed to a transaction log. “% of total” for each
category is the percentage of times the type of flush took place as a
percentage of the total number of ULC flushes. This category can
help you identify areas in the application that cause problems with
ULC flushes.

There is one user log cache (ULC) for each configured user
connection. SQL Server uses ULCs to buffer transaction log records.
On both SMP and uniprocessor systems, this helps reduce
transaction log I/O. For SMP systems, it reduces the contention on
the current page of the transaction log.

You can configure the size of the ULCs with the user log cache size
parameter of sp_configure. See “user log cache size” on page 11-111 of
the System Administration Guide.

ULC flushes are caused by the following activities:

• “by Full ULC” – a process’s ULC becomes full

• “by End Transaction” – a transaction ended (rollback or commit,
either implicit or explicit)

• “by Change of Database” – a transaction modified an object in a
different database (a multidatabase transaction)

• “by System Log Record” – a system transaction (such as an OAM
page allocation) occurred within the user transaction

• “by Other” – any other reason, including needing to write to disk

• “Total ULC Flushes” – total number of all ULC flushes that took
place during the sample interval

SQL Server Performance and Tuning Guide 19-29

Sybase SQL Server Release 11.0.x Transaction Management

When one of these activities causes a ULC flush, SQL Server copies
all log records from the user log cache to the database transaction log.

By Full ULC

A high value for “by Full ULC” indicates that SQL Server is flushing
the ULCs more than once per transaction, negating some
performance benefits of user log caches. A good rule of thumb is that
if the “% of total” for “by Full ULC” is greater than 20 percent,
consider increasing the size of the user log cache size parameter.

Increasing the ULC size increases the amount of memory required
for each user connection, so you do not want to configure the ULC
size to suit a small percentage of large transactions.

By End Transaction

A high value for “by End Transaction” indicates a healthy number of
short, simple transactions.

By Change of Database

The ULC is flushed every time there is a database change. If this is
the problem, consider decreasing the size of the ULC if it is greater
than 2K. If you divided a logical database in two because of
contention on the log in SQL Server release 10.0, consider putting it
back together for System 11.

By System Log Record and By Other

If these categories are higher than approximately 20 percent, and
your ULC size is greater than 2048, consider reducing the ULC size.

The following sections also provide information about transaction
log activity:

• “ULC Semaphore Requests” on page 19-30 reports on contention
for semaphore on the user log caches. (SMP only)

• “Log Semaphore Requests” on page 19-31 reports contention for
the log semaphore. (SMP only)

• “Transaction Log Writes” on page 19-32 reports the number of
transaction log writes.

19-30 Monitoring SQL Server Performance with sp_sysmon

Transaction Management Sybase SQL Server Release 11.0.x

ULC Log Records

This row provides an average number of log records per transaction.
It is useful in benchmarking or in controlled development
environments to determine the number of log records written to
ULCs per transaction.

Many transactions, such as those that affect several indexes or
deferred updates or deletes, require several log records for a single
data modification. Queries that modify a large number of rows log
one or more records for each row.

If this data is unusual, study the data in the next section, “Maximum
ULC Size” and look at your application for long-running
transactions and for transactions that modify large numbers of rows.

Maximum ULC Size

The value in the “count” column is the maximum number of bytes
used in any of the ULCs, across all of the ULCs. This data can help
you determine if ULC size is correctly configured.

Since SQL Server flushes the ULC when the transaction completes,
any unused memory allocated to the ULCs is wasted. If the value in
the “count” column is consistently less than the defined value for the
user log cache size parameter, reduce user log cache size to the value in the
“count” column (but no smaller than 2048 bytes).

When “Max ULC Size” equals the user log cache size, check the
number of flushes “By Full ULC” on page 19-29. If the number of
times that logs were flushed due to a full ULC is higher than about 20
percent, consider increasing the user log cache size using sp_configure.
See “user log cache size” on page 11-111 in the System Administration
Guide.

ULC Semaphore Requests

“ULC Semaphore Requests” reports on the number of times a user
task was immediately granted a semaphore or had to wait for it. “%
of total” shows the percentage of tasks granted semaphores and the
percentage of tasks that waited for semaphores as a percentage of the
total number of ULC semaphore requests. This is relevant only in
SMP environments.

A semaphore is a simple internal locking mechanism that prevents a
second task from accessing the data structure currently in use. SQL

SQL Server Performance and Tuning Guide 19-31

Sybase SQL Server Release 11.0.x Transaction Management

Server uses semaphores to protect the user log caches since more
than one process can access the records of a ULC and force a flush.

This category provides the following information:

• Granted – The number of times a task was granted a ULC
semaphore immediately upon request. There was no contention
for the ULC.

• Waited – The number of times a task tried to write to ULCs and
encountered semaphore contention.

• Total ULC Semaphore Requests – The total number of ULC
semaphore requests that took place during the interval. This
includes requests that were granted or had to wait.

Log Semaphore Requests

“Log Semaphore Requests” is a measure of contention for the log
semaphore that protects the current page of the transaction log in
cache. This data is meaningful for SMP environments only.

This category provides the following information:

• Granted – The number of times a task was granted a log
semaphore immediately after it requested one. “% of total” is the
percentage of immediately granted requests as a percentage of
the total number of log semaphore requests.

• Waited – The number of times two tasks tried to flush ULC pages
to the log simultaneously and one task had to wait for the log
semaphore. “% of total” is the percentage of tasks that had to wait
for a log semaphore as a percentage of the total number of log
semaphore requests.

• Total Log Semaphore Requests – The total number of times tasks
requested a log semaphore including those granted immediately
and those for which the task had to wait.

If a high “% of total” for “Waited” shows lot of contention for the log
semaphore, some options are:

• Increasing the ULC size, if “By Full ULC” is a frequent source of
user log cache flushes. See “ULC Flushes to Transaction Log” on
page 19-28 for more information.

• Reducing log activity through transaction redesign. Aim for more
batching with less frequent commits. Be sure to monitor lock
contention as part of the transaction redesign.

19-32 Monitoring SQL Server Performance with sp_sysmon

Index Management Sybase SQL Server Release 11.0.x

• Reducing the number of multidatabase transactions, since each
change of database context requires a log write.

• Dividing the database into more than one database so that there
are multiple logs. If you choose this solution, divide the database
in such a way that multidatabase transactions are minimized.

In high throughput environments with a large number of concurrent
users committing transactions, a certain amount of contention for the
log semaphore is expected. In some tests, very high throughput is
still maintained even though log semaphore contention is in the 20 to
30 percent range.

Transaction Log Writes

“Transaction Log Writes” is the total number of times SQL Server
wrote a transaction log page to disk. Transaction log pages are
written to disk when a transaction commits (after a wait for a group
commit sleep) or when the current log page or pages become full.

Transaction Log Allocations

“Transaction Log Alloc” is the number of times additional pages
were allocated to the transaction log.

This data is useful for comparing to other data in this section and for
tracking the rate of transaction log growth.

Avg # Writes per Log Page

This row uses the previous two values to report the average number
of times each log page was written to disk. The value is reported in
the “count” column.

In high throughput applications, you want to see this number as
close to 1 as possible. With low throughput, the number will be
significantly higher. In very low throughput environments, it may be
as high as one write per completed transaction.

Index Management

This category reports on index management activity including
nonclustered maintenance, page splits, and index shrinks.

SQL Server Performance and Tuning Guide 19-33

Sybase SQL Server Release 11.0.x Index Management

Sample Output for Index Management

The following sample shows sp_sysmon output for the “Index
Management” categories.

Index Management

 Nonclustered Maintenance per sec per xact count % of total
 ------------------------- --------- --------- ------- ----------
 Ins/Upd Requiring Maint 61.0 4.8 37205 n/a
 # of NC Ndx Maint 56.4 4.4 34412 n/a
 Avg NC Ndx Maint / Op n/a n/a 0.92493 n/a

 Deletes Requiring Maint 5.2 0.4 3173 n/a
 # of NC Ndx Maint 0.6 0.0 363 n/a
 Avg NC Ndx Maint / Op n/a n/a 0.11440 n/a

 RID Upd from Clust Split 0.0 0.0 0 n/a
 # of NC Ndx Maint 0.0 0.0 0 n/a
 Avg NC Ndx Maint / Op 0.0 0.0 0 n/a

 Page Splits 1.3 0.1 788 n/a
 Retries 0.2 0.0 135 17.1 %
 Deadlocks 0.0 0.0 14 1.8 %
 Empty Page Flushes 0.0 0.0 14 1.8 %
 Add Index Level 0.0 0.0 0 0.0 %

 Page Shrinks 0.0 0.0 0 n/a

Nonclustered Maintenance

This category measures the number of operations that required or
potentially required SQL Server to perform maintenance to one or
more indexes; that is, it measures the number of operations for which
SQL Server had to at least check whether or not it was necessary to
update the index. The output also gives the number of indexes that
actually were updated and the average number of indexes
maintained per operation.

In tables with clustered indexes and one or more nonclustered
indexes, all inserts, all deletes, some update operations, and any data
page splits, require changes to the nonclustered indexes. High values
for index maintenance indicate that you should assess the impact of
maintaining indexes on your SQL Server performance. While
indexes speed retrieval of data, maintenance to indexes slows data

19-34 Monitoring SQL Server Performance with sp_sysmon

Index Management Sybase SQL Server Release 11.0.x

modification. Maintenance requires additional processing,
additional I/O, and additional locking of index pages.

Other sp_sysmon output that is relevant to assessing this category is:

• The information on total updates, inserts and deletes, as well as
data on page splits. See “Transaction Detail” on page 19-24, and
“Page Splits” on page 19-36.

• Information on lock contention. See“Lock Detail” on page 19-42.

• Information on address lock contention. See “Address Lock
Contention” on page 19-18 and “Address Locks” on page 19-43.

For example, you can compare the number of inserts that took place
with the number of maintenance operations that resulted. If there is
a relatively high number of maintenance operations, page splits, and
retries, consider the usefulness of the indexes in your applications.
See Chapter 6, “Indexing for Performance” for more information.

Inserts and Updates Requiring Maintenance to Indexes

The data in this section gives information about how insert and
update operations affect indexes. For example, an insert to a
clustered table with 3 nonclustered indexes requires updates to all
three indexes, then the average number of operations that resulted in
maintenance to nonclustered indexes is three.

However, an update to the same table may require only one
maintenance operation, to the index whose key value was changed.

Inserts and Updates Requiring Maintenance

“Ins/Upd Requiring Maint” is the number of insert and update
operations to a table with indexes that potentially required
modifications to one or more indexes.

Number of Nonclustered Index Operations Requiring Maintenance

“# of NC Ndx Maint” is the number of nonclustered indexes that
actually required maintenance as a result of insert and update
operations.

Average Number of Nonclustered Indexes Requiring Maintenance

“Avg NC Ndx Maint/Op” is the average number of nonclustered
indexes per insert or update operation that required maintenance.

SQL Server Performance and Tuning Guide 19-35

Sybase SQL Server Release 11.0.x Index Management

Deletes Requiring Maintenance

The data in this section gives information about how delete
operations affect indexes.

Deletes Requiring Maintenance

“Deletes Requiring Maint” is the number delete operations that
potentially required modification to one or more indexes. See
“Deletes” on page 19-27

Number of Nonclustered Index Operations Requiring Maintenance

“# of NC Ndx Maint” is the number of nonclustered indexes that
actually required maintenance as a result of delete operations.

Average Number of Nonclustered Indexes Requiring Maintenance

“Avg NC Ndx Maint/Op” is the average number of nonclustered
indexes per delete operation that required maintenance.

RID Updates from Clustered Split

The row ID (RID) entry shows how many times a data page split
occurred in a table with a clustered index. These splits require
updating the nonclustered indexes for all of the rows that move to
the new data page.

Row ID Updates from Clustered Split

“Row ID Updates from Clustered Split” is the total number of
nonclustered indexes that required maintenance after a row ID
update from clustered split operations.

Number of Nonclustered Index Operations Requiring Maintenance

“# of NC Ndx Maint” is the number of nonclustered indexes that
required maintenance as a result of row ID update operations.

Average Number of Nonclustered Indexes Requiring Maintenance

“Avg NC Ndx Maint/Op” is the average number of nonclustered
indexes per RID update operation that required maintenance.

19-36 Monitoring SQL Server Performance with sp_sysmon

Index Management Sybase SQL Server Release 11.0.x

Page Splits

“Page Splits” reports on the number of times that SQL Server split a
data page, a clustered index page, or non-clustered index page
because there was not enough room for a new row.

When a data row is inserted into a table with a clustered index, the
row must be placed in physical order according to the key value.
Index rows must also be placed in physical order on the pages. If
there is not enough room on a page for a new row, SQL Server splits
the page, allocates a new page, and moves some rows to the new
page. Page splitting incurs overhead because it involves updating
the parent index page and the page pointers on the adjoining pages,
and adds lock contention. For clustered indexes, page splitting also
requires updating all nonclustered indexes that point to the rows on
the new page.

See “Choosing Fillfactors for Indexes” on page 6-44 and “Decreasing
the Number of Rows per Page” on page 11-30 for more information
about how to temporarily reduce page splits using fillfactor and
max_rows_per_page. Note that using max_rows_per_page almost always
increases the rate of splitting.

Reducing Page Splits for Ascending-Key Inserts

If “Page Splits” is high and your application is inserting values into a
table with a clustered index, it may be possible to reduce the number
of page splits.

The special optimization is designed to reduce page splitting and to
result in more completely filled data pages. The most likely scenario
involves clustered indexes with compound keys, where the first key
is already in use in the table, and the second column is based on an
increasing value.

Default Data Page Splitting

The table sales has a clustered index on store_id, customer_id. There are
three stores (A,B,C) and each of them adds customer records in
ascending numerical order.The table contains rows for the key

SQL Server Performance and Tuning Guide 19-37

Sybase SQL Server Release 11.0.x Index Management

values A,1; A,2; A,3; B,1; B,2; C,1; C,2 and C,3 and each page holds 4
rows, as shown in Figure 19-5.

Figure 19-5: Clustered table before inserts

Using the normal page splitting mechanism, inserting “A,4” results
in allocating a new page, and moving one-half of the rows to it, and
inserting the new row in place, as shown in Figure 19-6.

Figure 19-6: Insert causes a page split

When “A,5” is inserted, no split is needed, but when “A,6” is
inserted, another split takes place, as shown in Figure 19-7.

Figure 19-7: Another insert causes another page split

Adding “A,7” and “A,8” results in another page split, as shown in
Figure 19-8.

Figure 19-8: Page splitting continues

Page 1007
A 1 ...
A 2 ...
A 3 ...
B 1 ...

Page 1009
B 2 ...
C 1 ...
C 2 ...
C 3 ...

Page 1007
A 1 ...
A 2 ...

Page 1009
B 2 ...
C 1 ...
C 2 ...
C 3 ...

Page 1129
A 3 ...
A 4 ...
B 1 ...

Page 1007
A 1 ...
A 2 ...

Page 1009
B 2 ...
C 1 ...
C 2 ...
C 3 ...

Page 1129
A 3 ...
A 4 ...

Page 1134
A 5 ...
A 6 ...
B 1 ...

Page 1007
A 1 ...
A 2 ...

Page 1009
B 2 ...
C 1 ...
C 2 ...
C 3 ...

Page 1129
A 3 ...
A 4 ...

Page 1134
A 5 ...
A 6 ...

Page 1137
A 7 ...
A 8 ...
B 1 ...

19-38 Monitoring SQL Server Performance with sp_sysmon

Index Management Sybase SQL Server Release 11.0.x

Effects of Ascending Inserts

You can set “ascending inserts mode” for a table, so that pages are
split at the point of the inserted row, rather than in the middle of the
page. Starting from the original table shown in Figure 19-5 on page
19-37, the insertion of “A,4” results in a split at the insertion point,
with a the remaining rows on the page moving to a newly allocated
page:

Figure 19-9: First insert with ascending inserts mode

Inserting “A,5” causes a new page to be allocated, as shown in Figure
19-10.

Figure 19-10:Additional ascending insert causes a page allocation

Adding “A,6”, “A,7” and “A,8” fills the new page, as shown in
Figure 19-11.

Figure 19-11:Additional inserts fill the new page

Setting Ascending Inserts Mode for a Table

The following commands turns on ascending insert mode for the
sales table:

dbcc tune (ascinserts, 1, "sales")

Page 1007
A 1 ...
A 2 ...
A 3 ...
A 4 ...

Page 1009
B 2 ...
C 1 ...
C 2 ...
C 3 ...

Page 1129
B 1 ...

Page 1007
A 1 ...
A 2 ...
A 3 ...
A 4 ...

Page 1009
B 2 ...
C 1 ...
C 2 ...
C 3 ...

Page 1129
B 1 ...

Page 1134
A 5 ...

Page 1007
A 1 ...
A 2 ...
A 3 ...
A 4 ...

Page 1009
B 2 ...
C 1 ...
C 2 ...
C 3 ...

Page 1129
B 1 ...

Page 1134
A 5 ...
A 6 ...
A 7 ...
A 8 ...

SQL Server Performance and Tuning Guide 19-39

Sybase SQL Server Release 11.0.x Index Management

To turn ascending insert mode off, use:

dbcc tune (ascinserts, 0, "sales")

You must reissue this command each time you restart SQL Server. If
tables sometimes experience random inserts and have more ordered
inserts during batch jobs, it is better to turn it on explicitly for the
batch job.

Retries

“Retries” is the number of times SQL Server attempted to lock a split
page and could not because another task already held a lock on the
page or on a neighboring page. SQL Server traverses the index from
the root page each time it retries, increasing locking and overhead.

A high number of retries indicates high contention in a small area of
the index B-tree.

If your application encounters a high number of retries, reduce page
splits using fillfactor when you re-create the index. See “Decreasing
the Number of Rows per Page” on page 11-30.

Deadlocks

“Deadlocks” is the number of page splits that resulted in deadlocks.

Empty Page Flushes

“Empty Page Flushes” is the number of empty pages resulting from
page splits that were flushed to disk.

Add Index Level

“Add Index Level” reports the number of times a new index level
was added. This does not happen frequently, so you should expect to
see result values of zero most of the time. The count could have a
value of 1 or 2 if your sample includes inserts into an empty table or
a small table with indexes.

Page Shrinks

“Page Shrinks” is the number of times that deleting index rows
caused the index to shrink off a page. Shrinks incur overhead due to
locking in the index and the need to update pointers on adjacent

19-40 Monitoring SQL Server Performance with sp_sysmon

Lock Management Sybase SQL Server Release 11.0.x

pages. Repeated “count” values greater than zero indicate there may
be many pages in the index with fairly small numbers of rows per
page due to delete and update operations. If there are a high number
of shrinks, consider rebuilding indexes.

Lock Management

“Lock Management” reports on locks, deadlocks, lock promotions,
and freelock contention.

Sample Output for Lock Management

The following sample shows sp_sysmon output for the “Lock
Management” categories.

Lock Management

 Lock Summary per sec per xact count % of total
 ------------------------- --------- --------- ------- ----------
 Total Lock Requests 2540.8 21.2 153607 n/a
 Avg Lock Contention 3.7 0.0 224 0.1 %
 Deadlock Percentage 0.0 0.0 0 0.0 %

 Lock Detail per sec per xact count % of total
 ------------------------- --------- --------- ------- ----------

 Exclusive Table
 Granted 403.7 4.0 24376 100.0 %
 Waited 0.0 0.0 0 0.0 %
 ------------------------- --------- --------- -------
 Total EX-Table Requests 0.0 0.0 0 0.0 %

 Shared Table
 Granted 325.2 4.0 18202 100.0 %
 Waited 0.0 0.0 0 0.0 %
 ------------------------- --------- --------- -------
 Total SH-Table Requests 0.0 0.0 0 0.0 %

 Exclusive Intent
 Granted 480.2 4.0 29028 100.0 %
 Waited 0.0 0.0 0 0.0 %
 ------------------------- --------- --------- -------
 Total EX-Intent Requests 480.2 4.0 29028 18.9 %

SQL Server Performance and Tuning Guide 19-41

Sybase SQL Server Release 11.0.x Lock Management

 Shared Intent
 Granted 120.1 1.0 7261 100.0 %
 Waited 0.0 0.0 0 0.0 %
 ------------------------- --------- --------- -------
 Total SH-Intent Requests 120.1 1.0 7261 4.7 %

 Exclusive Page
 Granted 483.4 4.0 29227 100.0 %
 Waited 0.0 0.0 0 0.0 %
 ------------------------- --------- --------- -------
 Total EX-Page Requests 483.4 4.0 29227 19.0 %

 Update Page
 Granted 356.5 3.0 21553 99.0 %
 Waited 3.7 0.0 224 1.0 %
 ------------------------- --------- --------- -------
 Total UP-Page Requests 360.2 3.0 21777 14.2 %

 Shared Page
 Granted 3.2 0.0 195 100.0 %
 Waited 0.0 0.0 0 0.0 %
 ------------------------- --------- --------- -------
 Total SH-Page Requests 3.2 0.0 195 0.1 %

 Exclusive Address
 Granted 134.2 1.1 8111 100.0 %
 Waited 0.0 0.0 0 0.0 %
 ------------------------- --------- --------- -------
 Total EX-Address Requests 134.2 1.1 8111 5.3 %

 Shared Address
 Granted 959.5 8.0 58008 100.0 %
 Waited 0.0 0.0 0 0.0 %
 ------------------------- --------- --------- -------
 Total SH-Address Requests 959.5 8.0 58008 37.8 %

 Last Page Locks on Heaps
 Granted 120.1 1.0 7258 100.0 %
 Waited 0.0 0.0 0 0.0 %
 ------------------------- --------- --------- -------
 Total Last Pg Locks 120.1 1.0 7258 4.7 %

 Deadlocks by Lock Type per sec per xact count % of total
 ------------------------- --------- --------- ------- ----------

19-42 Monitoring SQL Server Performance with sp_sysmon

Lock Management Sybase SQL Server Release 11.0.x

 0.0 0.0 0 n/a

 Deadlock Detection
 Deadlock Searches 0.1 0.0 4 n/a
 Searches Skipped 0.0 0.0 0 0.0 %
 Avg Deadlocks per Search n/a n/a 0.00000 n/a

 Lock Promotions
 0.0 0.0 0 n/a

Note that shared and exclusive table locks, “Deadlocks by Lock
Type,” and “Lock Promotions” do not contain detail rows because
there were no occurrences of them during the sample interval.

Lock Summary

“Lock Summary” provides overview statistics about lock activity
that took place during the sample period.

Total Lock Requests

“Total Lock Requests” reports on the total number of lock requests.

Average Lock Contention

“Avg Lock Contention” is the average number of times there was
lock contention as a percentage of all of the lock requests combined.

If average lock contention is high, study the lock detail information
below and read “Locking and Performance of SQL Server” on page
11-28.

Deadlock Percentage

“Deadlock Percentage” is the percentage of deadlocks as a
percentage of the total number lock requests. If this value is high, see
“Deadlocks by Lock Type” on page 19-44.

Lock Detail

“Lock Detail” provides information that you can use to determine if
the application is causing a lock contention or deadlock-related
problem.

SQL Server Performance and Tuning Guide 19-43

Sybase SQL Server Release 11.0.x Lock Management

This output reports on locks by type, displaying the number of times
that each lock type was granted immediately, and how many times a
task had to wait for a particular type of lock. The “% of total” is the
percentage of the specific lock type that was granted or had to wait
with respect to the total number of lock requests.

“Lock Detail” reports on the following types of locks:

• Exclusive Table

• Shared Table

• Exclusive Intent

• Shared Intent

• Exclusive Page

• Update Page

• Shared Page

• Exclusive and Shared Address

• Last Page Locks on Heaps

Lock contention can have a large impact on SQL Server performance.
Table locks generate more lock contention than page locks because
no other tasks can access a table while there is an exclusive table lock
on it, and if a task requires an exclusive table lock, it must wait until
all shared locks are released.

You can try redesigning the tables that have the highest lock
contention or the queries that acquire and hold the locks, to reduce
the number of locks they hold and the length of time the locks are
held. Table, page, and intent locks are described in “Types of Locks in
SQL Server” on page 11-6.

Address Locks

“Address Locks” reports the number of times there was contention
for address locks. Address locks are held on index pages. Address
lock contention occurs more often in a higher throughput
environment.

Last Page Locks on Heaps

“Last Page Locks on Heaps” is the number of times there was lock
contention for the last page of a partitioned or unpartitioned heap
table.

19-44 Monitoring SQL Server Performance with sp_sysmon

Lock Management Sybase SQL Server Release 11.0.x

This information can indicate if there are tables in the system that
would benefit from partitioning or from increasing the number of
partitions. If you know that one or more tables is experiencing a
problem with last page locks, SQL Server Monitor is a tool that can
help.

See “Improving Insert Performance with Partitions” on page 13-12
for information on how partitions can help solve the problem of last
page locking on unpartitioned heap tables.

Deadlocks by Lock Type

“Deadlocks by Lock Type” reports on the number of specific types of
deadlocks. “% of total” gives the number of each deadlock type as a
percentage of the total number of deadlocks.

Deadlocks may occur when many transactions execute at the same
time in the same database. They become more common as the lock
contention increases between the transactions.

This category reports data for the following deadlock types:

• Exclusive Table

• Shared Table

• Exclusive Intent

• Shared Intent

• Exclusive Page

• Update Page

• Shared Page

• Address

“Total Deadlocks” summarizes the data for all lock types.

As in the example for this section, if there are no deadlocks, sp_sysmon
does not display any of the detail information.

To pinpoint exactly where deadlocks occur, try running several
applications in a controlled environment with deadlock information
printing enabled. See “print deadlock information” on page 11-90 in
the System Administration Guide.

For more information on lock types, see “Types of Locks in SQL
Server” on page 11-6.

SQL Server Performance and Tuning Guide 19-45

Sybase SQL Server Release 11.0.x Lock Management

For more information on deadlocks and coping with lock contention,
see “Deadlocks and Concurrency in SQL Server” on page 11-26 and
“Locking and Performance of SQL Server” on page 11-28.

Deadlock Detection

“Deadlock Detection” reports the number of deadlock searches that
found deadlocks and deadlock searches that were skipped during
the sample interval.

“Deadlocks and Concurrency in SQL Server” on page 11-26 for a
discussion of the background issues related to this topic.

Deadlock Searches

“Deadlock Searches” reports the number of times that SQL Server
initiated a deadlock search during the sample interval.

Deadlock checking is time-consuming overhead for applications that
experience no deadlocks or very low levels of deadlocking. You can
use this data with “Average Deadlocks per Search” to determine if
SQL Server is checking for deadlocks too frequently.

Searches Skipped

“Searches Skipped” is the number of times that a task started to
perform deadlock checking but found deadlock checking in progress
and skipped its check. “% of total” is the percentage of deadlock
searches that were skipped as a percentage of the total number of
searches.

When a process is blocked by lock contention, it waits for an interval
of time set by the sp_configure parameter deadlock checking period. When
this period elapses, it starts deadlock checking. If a search is already
in process, the process skips the search.

If you see some number of searches skipped, but some of the
searches are finding deadlocks, increase the parameter slightly. If
you see a lot of searches skipped, and no deadlocks, or very few, you
can increase the counter by a larger amount.

See “deadlock checking period” on page 11-35 in the System
Administration Guide.

19-46 Monitoring SQL Server Performance with sp_sysmon

Data Cache Management Sybase SQL Server Release 11.0.x

Average Deadlocks per Search

“Avg Deadlocks per Search” reports the average number deadlocks
found per search.

This category measures whether SQL Server is checking too
frequently. For example, you might decide that finding one deadlock
per search indicates excessive checking. If so, you can adjust the
frequency with which tasks search for deadlocks by increasing the
value configured for the deadlock checking period parameter. See
“deadlock checking period” on page 11-35 in the System
Administration Guide.

Lock Promotions

“Lock Promotions” reports on the number of times that the following
escalations took place:

• “Ex-Page to Ex-Table” – exclusive page to exclusive table

• “Sh-Page to Sh-Table” – shared page to shared table

The “Total Lock Promotions” row reports the average number of lock
promotion types combined per second and per transaction.

If there are no lock promotions, sp_sysmon does not display the detail
information, as the example for this section shows.

“Lock Promotions” data can:

• Help you detect if lock promotion in your application to is a cause
of lock contention and deadlocks

• Be used before and after tuning lock promotion variables to
determine the effectiveness of the values.

Look at the “Granted” and “Waited” data above for signs of
contention. If lock contention is high and lock promotion is frequent,
consider changing the lock promotion thresholds for the tables
involved.

You can configure the lock promotion threshold server-wide, or for
individual tables. See “Setting the Lock Promotion Thresholds” on
page 11-9.

Data Cache Management

sp_sysmon reports summary statistics for all caches, and statistics for
statistics for each named cache.

SQL Server Performance and Tuning Guide 19-47

Sybase SQL Server Release 11.0.x Data Cache Management

sp_sysmon reports the following activities for the default data cache
and each named cache:

• Spinlock contention

• Utilization

• Cache searches including hits and misses

• Pool turnover for all configured pools

• Buffer wash behavior including buffers passed clean, already in
I/O, and washed dirty

• Prefetch requests performed and denied

• Dirty read page requests

19-48 Monitoring SQL Server Performance with sp_sysmon

Data Cache Management Sybase SQL Server Release 11.0.x

Figure 19-12 shows how these caching features relate to disk I/O and
the data caches.

Figure 19-12:Cache management categories

You can use sp_cacheconfig and sp_helpcache output to help you analyze
the data from this category. sp_cacheconfig provides information about
caches and pools and sp_helpcache provides information about objects
bound to caches. See Chapter 9, “Configuring Data Caches” in the
System Administration Guide for more information for information on
how to use these procedures. See “Named Data Caches” on page
15-12 for more information on performance issues and named
caches.

Cache strategy

Cached

Performed

Denied

Discarded

MRU
Wash marker

Searches
 Hits

Misses

Large I/O

Large I/O detail

Pages used

Pages cached

2K Pool

16K Pool

Turnover

LRU

SQL Server Performance and Tuning Guide 19-49

Sybase SQL Server Release 11.0.x Data Cache Management

Sample Output for Data Cache Management

The following sample shows sp_sysmon output for the “Data Cache
Management” categories. The first block of data, “Cache Statistics
Summary,” includes information for all caches. The output also
reports a separate block of data for each cache. These blocks are
identified by the cache name. The sample output shown here
includes only a single user defined cache, although there were more
caches configured during the interval.

Data Cache Management

 Cache Statistics Summary (All Caches)

 Cache Search Summary
 Total Cache Hits 1653.2 13.8 99945 95.8 %
 Total Cache Misses 73.0 0.6 4416 4.2 %
 ------------------------- --------- --------- -------
 Total Cache Searches 1726.2 14.4 104361

 Cache Turnover
 Buffers Grabbed 56.7 0.5 3428 n/a
 Buffers Grabbed Dirty 0.0 0.0 0 0.0 %

 Cache Strategy Summary
 Cached (LRU) Buffers 2155.8 17.9 130333 100.0 %
 Discarded (MRU) Buffers 0.0 0.0 0 0.0 %

 Large I/O Usage
 Large I/Os Performed 20.0 0.2 1211 87.4 %
 Large I/Os Denied 2.9 0.0 174 12.6 %
 ------------------------- --------- --------- -------
 Total Large I/O Requests 22.9 0.2 1385

 Large I/O Effectiveness
 Pages by Lrg I/O Cached 0.0 0.0 0 n/a

 Dirty Read Behavior
 Page Requests 0.0 0.0 0 n/a

--
branch_cache
 per sec per xact count % of total
 ------------------------- --------- --------- ------- ----------

19-50 Monitoring SQL Server Performance with sp_sysmon

Data Cache Management Sybase SQL Server Release 11.0.x

 Spinlock Contention n/a n/a n/a 1.3 %
 Utilization n/a n/a n/a 20.9 %

 Cache Searches
 Cache Hits 360.3 3.0 21783 100.0 %
 Found in Wash 0.0 0.0 0 0.0 %
 Cache Misses 0.0 0.0 0 0.0 %
 ------------------------- --------- --------- -------
 Total Cache Searches 360.3 3.0 21783

 Pool Turnover
 0.0 0.0 0 n/a
 ------------------------- --------- --------- -------
 Total Cache Turnover 0.0 0.0 0

 Buffer Wash Behavior
 Statistics Not Available - No Buffers Entered Wash Section Yet

 Cache Strategy
 Cached (LRU) Buffers 354.9 3.0 21454 100.0 %
 Discarded (MRU) Buffers 0.0 0.0 0 0.0 %

 Large I/O Usage
 0.0 0.0 0 n/a

 Large I/O Detail
 No Large Pool(s) In This Cache

 Dirty Read Behavior
 Page Requests 0.0 0.0 0 n/a

Cache Statistics Summary (All Caches)

This section summarizes behavior for the default data cache and all
named data caches combined. Corresponding information is printed
for each data cache. For a full discussion of these rows, see “Cache
Management By Cache” on page 19-54.

Cache Search Summary

This section provides summary information about cache hits and
misses. Use this data to get an overview of how effective cache

SQL Server Performance and Tuning Guide 19-51

Sybase SQL Server Release 11.0.x Data Cache Management

design is. A high number of cache misses indicates that you should
investigate statistics for each cache.

Total Cache Hits

“Total Cache Hits” is the number of times that a needed page was
found in any cache. “% of total” is the percentage of cache hits as a
percentage of the total number of cache searches.

Total Cache Misses

“Total Cache Misses” reports the number of times that a needed page
was not found in a cache and had to be read from disk. “% of total” is
the percentage of times that the buffer was not found in the cache as
a percentage of all cache searches.

Total Cache Searches

This row reports the total number of cache searches, including hits
and misses for all caches combined.

Cache Turnover

This section provides a summary of cache turnover.

Buffers Grabbed

“Buffers Grabbed” is the number of buffers that were replaced in all
of the caches. The “count” column represents the number of times
that SQL Server fetched a buffer from the LRU end of the cache,
replacing a database page. If the server was recently restarted, so that
the buffers are empty, reading a page into an empty buffer is not
counted here.

Buffers Grabbed Dirty

“Buffers Grabbed Dirty” is the number of times that fetching a buffer
found a dirty page at the LRU end of the cache and had to wait while
the buffer was written to disk. If this value is non-zero, find out
which caches are affected. It represents a serious performance hit.

Cache Strategy Summary

This section provides a summary of the caching strategy used.

19-52 Monitoring SQL Server Performance with sp_sysmon

Data Cache Management Sybase SQL Server Release 11.0.x

Cached (LRU) Buffers

“Cached (LRU) Buffers” is the total number of buffers placed at the
head of the MRU/LRU chain in all caches.

Discarded (MRU) Buffers

“Discarded (MRU) Buffers” is the total number of buffers in all
caches following the fetch-and-discard strategy – the buffers placed
at the wash marker.

Large I/O Usage

This section provides summary information about the large I/O
requests in all caches. If “Large I/Os Denied” is high, investigate
individual caches to determine the cause.

Large I/Os Performed

“Large I/Os Performed” measures the number of times that the
requested large I/O was performed. “% of total” is the percentage of
large I/O requests performed as a percentage of the total number of
I/O requests made.

Large I/Os Denied

“Large I/Os Denied” reports the number of times that large I/O
could not be performed. “% of total” is the percentage of large I/O
requests denied as a percentage of the total number of requests
made.

Total Large I/O Requests

This row reports the number of all large I/O requests (both granted
and denied) for all caches.

Large I/O Effectiveness

“Large I/O Effectiveness” helps determine the performance benefits
of large I/O. It compares the number of pages that were brought into
cache by a large I/O to the number of pages actually referenced
while in the cache. If the percentage for “Pages by Lrg I/O Used” is
low, it means that few of the pages brought into cache are being
accessed by queries. Investigate the individual caches to determine
the source of the problem.

SQL Server Performance and Tuning Guide 19-53

Sybase SQL Server Release 11.0.x Data Cache Management

Pages by Lrg I/O Cached

“Pages by Lrg I/O Cached” is the number of pages brought into all
caches by all the large I/O operations that took place during the
sample interval.

Low percentages could indicate one of the following:

• Allocation fragmentation in the table’s storage

• Inappropriate caching strategy

Pages by Lrg I/O Used

“Pages by Lrg I/O Used” is the total number of pages that were
actually used after being brought into cache as part of a large I/O.
sp_sysmon will not print output for this category if there were no
“Pages by Lrg I/O Cached.”

Dirty Read Behavior

This section provides information to help you analyze how dirty
reads affect the system.

Dirty Read Page Requests

“Page Requests” (also known as isolation level 0 page requests) is the
average number of pages that were requested at isolation level 0.

The “% of total” output for “Dirty Read Page Requests” shows the
percentage of dirty reads with respect to the total number of page
reads.

Dirty read page requests incur high overhead if they lead to many
dirty read re-starts. Therefore, the dirty page read request data is
most valuable when you use it with the data for “Dirty Read Re-
Starts”.

Dirty Read Re-Starts

“Re-Starts” reports the number of dirty read restarts that took place.
This category is only reported for the server as a whole, and not for
individual caches. sp_sysmon will not print output for this category if
there were no “Dirty Read Page Requests.”

A dirty read restart occurs when a dirty read is active on a page and
another process makes changes to the page that cause the page to be
deallocated. The scan for the level 0 must be restarted.

19-54 Monitoring SQL Server Performance with sp_sysmon

Data Cache Management Sybase SQL Server Release 11.0.x

The “% of total” output is the percentage of dirty read re-starts done
with isolation level 0 as a percentage of the total number of page
reads.

If these values are high, you might take steps to reduce them through
application modifications because overhead associated with dirty
reads and resulting restarts is very expensive. Most applications
should avoid restarts because of the large overhead it incurs.

Cache Management By Cache

There is a section of information on cache utilization for each active
cache on the server.

Spinlock Contention

“Spinlock Contention” reports the number of times a SQL Server
engine encountered spinlock contention and had to wait, as a
percentage of the total spinlock requests for that cache. This is
meaningful for SMP environments only.

When a user task makes any changes to a cache, a spinlock denies all
other tasks access to the cache while the changes are being made.
Although spinlocks are held for extremely brief durations, they can
slow performance in multiprocessor systems with high transaction
rates.

To improve performance, you can divide the default data cache into
named data caches, each controlled by a separate spinlock. This can
increase concurrency on multiple CPU systems. See “Named Data
Caches” on page 15-12.

Utilization

“Utilization” reports the percentage of searches that went to the
cache in question as a percentage of searches across all caches
configured.

You can compare this value for each cache to determine if there are
caches that are over- or underutilized. If you decide that a cache is
not well utilized, you can:

• Change the cache bindings to balance utilization. See “Caches
and Objects Bindings” on page 3-15 and “Binding Objects to
Caches” on page 9-13 in the System Administration Guide for more
information.

SQL Server Performance and Tuning Guide 19-55

Sybase SQL Server Release 11.0.x Data Cache Management

• Resize the cache to correspond more appropriately to its
utilization. See “Resizing Named Data Caches” on page 9-20 in
the System Administration Guide for more information.

Cache Search, Hit, and Miss Information

The data on cache searches, hits, and misses is useful for
understanding how many searches find the page in cache and how
many need to perform physical reads.

Cache hits are roughly comparable to the logical reads values
reported by statistics io, and cache misses are roughly equivalent to
physical reads. sp_sysmon will always report higher values than those
shown by statistics io, since sp_sysmon also reports the I/O for system
tables, log pages, OAM pages and other system overhead.

Interpreting cache hit data requires understanding of how the
application uses each cache. In caches created to hold specific objects
such as indexes or look up tables, cache hit ratios may reach 100
percent. In caches used for random point queries on huge tables,
cache hit ratios may be quite low but still represent effective cache
use.

This data can also help you to determine if adding more memory
would improve performance. For example, if “Cache Hits” is high,
adding memory probably will not help much.

Cache Hits

“Cache Hits” is the number of times that a needed page was found in
the data cache. “% of total” is the percentage of cache hits compared
to the total number of cache searches.

Found in Wash

The number of times that the needed page was found in the wash
section of the cache. “% of total” is the percentage of times that the
buffer was found in the wash area as a percentage of the total
number of hits.

If the data indicate a large percentage of cache hits found in the wash
section, it may mean the wash is too big. A large wash section might
lead to increased physical I/O because SQL Server initiates a write
on all dirty pages as they cross the wash marker. If a page in the wash
area is re-dirtied, I/O has been wasted.

If queries on tables in the cache use “fetch-and-discard” strategy, the
first cache hit for a page in one of these buffers finds it in the wash.

19-56 Monitoring SQL Server Performance with sp_sysmon

Data Cache Management Sybase SQL Server Release 11.0.x

The page is moved to the MRU end of the chain, so a second hit soon
after the first finds it still outside the wash area.

See “Specifying the Cache Strategy” on page 9-12 for information
about controlling caching strategy.

If necessary, you can change the wash size. See “Changing the Wash
Area for a Memory Pool” on page 9-18 for more information. If you
make the wash size smaller, run sp_sysmon again under fully loaded
conditions and check the output for “Grabbed Dirty” values greater
than 0. See “Buffers Grabbed Dirty” on page 19-51.

Cache Misses

“Cache Misses” reports the number of times that a needed page was
not found in the cache and had to be read from disk. “% of total” is
the percentage of times that the buffer was not found in the cache as
a percentage of the total searches.

Total Cache Searches

This row summarizes cache search activity. Note that the “Found in
Wash” data is a subcategory of the “Cache Hits” number and
therefore, it is not used in the summary calculation.

Pool Turnover

“Pool Turnover” reports the number of times that a buffer is replaced
from each pool in a cache. Each cache can have up to 4 pools, with
I/O sizes of 2K, 4K, 8K, and 16K. If there is any “Pool Turnover,”
sp_sysmon prints the “LRU Buffer Grab” and “Grabbed Dirty”
information for each pool that is configured and a total turnover
figure for the entire cache. If there is no “Pool Turnover,” sp_sysmon
prints only a row of zeros for “Total Cache Turnover,” as the example
for this section shows.

Here is an example of sp_sysmon data that does have pool turnover:

Pool Turnover
 2 Kb Pool
 LRU Buffer Grab 1.2 0.3 390 84.2 %
 Grabbed Dirty 0.0 0.0 0 0.0 %

 16 Kb Pool
 LRU Buffer Grab 0.2 0.1 73 15.8 %
 Grabbed Dirty 0.0 0.0 0 0.0 %-
----------------------- --------- ------------ ----------
 Total Cache Turnover 1.4 0.3 463

SQL Server Performance and Tuning Guide 19-57

Sybase SQL Server Release 11.0.x Data Cache Management

This information helps you to determine if the pools and cache are
the right size.

LRU Buffer Grab

“LRU Buffer Grab” is only incremented when a page is replaced by
another page. If you have recently restarted SQL Server, or you have
just unbound and rebound the object or database to the cache,
turnover does not count reading pages into empty buffers.

If memory pools are too small for the throughput, you may see high
turnover in the pools, reduced cache hit rates, and increased I/O
rates. If turnover is high in some pools and low in other pools, you
might want to move space from the less active pool to the more active
pool, especially if it can improve the cache-hit ratio.

If the pool has a thousand buffers, and SQL Server is replacing a
hundred buffers every second, 10 percent of the buffers are getting
turned over per second. That might be an indication that buffers do
not stay in the cache for an adequate period for that particular object.

Grabbed Dirty

“Grabbed Dirty” gives statistics for the number of dirty buffers that
reached the LRU before they could be written to disk. When SQL
Server needs to grab a buffer from the LRU end of the cache in order
to fetch a page from disk, and finds a dirty buffer instead of a clean
one, it must wait for I/O on the dirty buffer to complete. “% of total”
is the percentage of buffers grabbed dirty as a percentage of the total
number of buffers grabbed.

If “Grabbed Dirty” is non-zero, it indicates that the wash area of the
pool is too small for the throughput in the pool. Remedial actions
depend on the pool configuration and usage:

• If the pool is very small and has high turnover, consider
increasing the size of the pool and the wash area.

• If the pool is large and is used for a large number of data
modification operations, increase the size of the wash area.

• If there are several objects using the cache, moving some of them
to another cache could help.

• Check query plans and I/O statistics for objects that use the cache
for queries that perform a lot of physical I/O in the pool. Tune
queries, if possible, by adding indexes.

19-58 Monitoring SQL Server Performance with sp_sysmon

Data Cache Management Sybase SQL Server Release 11.0.x

Check the “per second” values for “Buffers Washed Dirty” on page
19-59 and “Buffers Already in I/O” on page 19-59. The wash area
should be large enough so that I/O can be completed on dirty buffers
before they reach the LRU. This depends on the actual number of
physical writes per second that your disk drives achieve.

Also check “Disk I/O Management” on page 19-66 to see if I/O
contention is slowing disk writes.

It might help to increase the housekeeper free write percent parameter. See
“How the Housekeeper Task Improves CPU Utilization” on page
17-9 and “housekeeper free write percent” on page 11-75 in the
System Administration Guide.

Total Cache Turnover

This summary line provides the total number of buffers grabbed in
all pools in the cache.

Buffer Wash Behavior

This category reports information about the state of buffers when
they reach the pool’s wash marker. When a buffer reaches the wash
marker it can be in one of three states:

• Clean – the buffer has not been changed while it was in the cache,
or it has been changed, and has already been written to disk by
the housekeeper or a checkpoint. When the write completes, the
page remains in cache and is marked clean.

• Already in I/O – the page was dirtied while in the cache, and the
housekeeper or a checkpoint has started I/O on the page, but the
I/O has not completed.

• Dirty – the buffer has been changed while in the cache, and has
not been written to disk. An asynchronous I/O is started on the
page as it passes the wash marker.

If no buffers pass the wash marker during the sample interval,
sp_sysmon prints:

Statistics Not Available - No Buffers Entered Wash
Section Yet!

Buffers Passed Clean

“Buffers Passed Clean” is the number of buffers that were clean
when they passed the wash marker. “% of total” is the percentage of

SQL Server Performance and Tuning Guide 19-59

Sybase SQL Server Release 11.0.x Data Cache Management

buffers passed clean as a percentage of the total number of buffers
that passed the wash marker.

Buffers Already in I/O

“Buffers Already in I/O” is the number of times that I/O was
already active on a buffer when it entered the wash area. “% of total”
is the percentage of buffers already in I/O as a percentage of the total
number of buffers that entered the wash area.

I/Os active on pages as they cross the wash marker is due to either
the housekeeper task or the checkpoint process. See “housekeeper
free write percent” on page 11-75 in the System Administration Guide
for more information about configuring the housekeeper.

Buffers Washed Dirty

“Buffers Washed Dirty” is the number of times that a buffer entered
the wash area dirty and not already in I/O. “% of total” is the
percentage of buffers washed dirty as a percentage of the total
number of buffers that entered the wash area.

Cache Strategy

This section provides statistics on the number of buffers placed in
cache following the fetch-and-discard (MRU) or normal (LRU)
caching strategies.

Cached (LRU) Buffers

“Cached(LRU) Buffers” is the number of buffers following normal
cache strategy and going to the MRU end of the cache. This includes
all buffers read directly from disk and going to the MRU end, and all
buffers that are found in cache. At the completion of the logical I/O,
the buffer is placed at the MRU end of the cache.

Discarded (MRU) Buffers

“Discarded (MRU) Buffers” is the number of buffers following the
fetch-and-discard strategy.

If you expect an entire table to be cached, but you are seeing a high
value for “Discarded Buffers,” use showplan to see if the optimizer is
generating the fetch-and-discard strategy when it should be using
the normal cache strategy. See “Specifying the Cache Strategy” on
page 9-12 for more information.

19-60 Monitoring SQL Server Performance with sp_sysmon

Data Cache Management Sybase SQL Server Release 11.0.x

Large I/O Usage

This section provides data about SQL Server prefetch requests for
large I/O. It reports statistics on the numbers of large I/O requests
performed and denied.

Large I/Os Performed

“Large I/Os Performed” measures the number of times that a
requested large I/O was performed. “% of total” is the percentage of
large I/O requests performed as a percentage of the total number of
requests made.

Large I/Os Denied

“Large I/Os Denied” reports the number of times that large I/O
could not be performed. “% of total” is the percentage of large I/O
requests denied as a percentage of the total number of requests
made.

SQL Server cannot perform large I/O:

• If any page in a buffer already resides in another pool.

• When there are no buffers available in the requested pool.

• On the first extent of an allocation unit, since it contains the
allocation page, which is always read into the 2K pool. This
means that on a large table scan, at least one large I/O out of 32
will be denied.

If a high percentage of large I/Os are denied, it indicates that the use
of the larger pools might not be as effective as it could be. If a cache
contains a large I/O pool, and queries perform both 2K and 16K I/O
on the same objects, there will always be some percentage of large
I/Os that cannot be performed because pages are in the 2K pool.

If more than half of the large I/Os are denied, and you are using 16K
I/O, try moving all of the space from the 16K pool to the 8K pool and
rerun the test to see if total I/O is reduced. Note that when a 16K I/O
is denied, SQL Server does not check for 8K or 4K pools but simply
uses the 2K pool.

You can use information from this category and “Pool Turnover” to
help judge the correct size for pools.

SQL Server Performance and Tuning Guide 19-61

Sybase SQL Server Release 11.0.x Procedure Cache Management

Total Large I/O Requests

“Total Large I/O Requests” provides summary statistics for large
I/Os performed and denied for all caches combined.

Large I/O Detail

This section provides summary information for each pool
individually. It contains a block of information for each 4K, 8K, or
16K pool configured in cache. It prints the pages brought in (“Pages
Cached”) and pages referenced (“Pages Used”) for each I/O size that
is configured.

For example, if a query performs a 16K I/O and reads a single data
page, “Pages Cached” equals eight, and “Pages Used” equals one.

Pages Cached

“Pages by Lrg I/O Cached” prints the total number of pages read
into the cache.

Pages Used

“Pages by Lrg I/O Used” is the number of pages used by a query
while in cache.

Dirty Read Behavior

“Page Requests” is the average number of pages that were requested
at isolation level 0.

The “% of total” output for “Dirty Read Page Requests” shows the
percentage of dirty reads with respect to the total number of page
reads.

Procedure Cache Management

“Procedure Cache Management” reports on the number of times
stored procedures and triggers were requested, read from disk, and
removed.

Sample Output for Procedure Cache Management

The following sample shows sp_sysmon output for the “Procedure
Cache Management” category.

19-62 Monitoring SQL Server Performance with sp_sysmon

Procedure Cache Management Sybase SQL Server Release 11.0.x

Procedure Cache Management per sec per xact count % of total
--------------------------- --------- --------- ------- ----------
 Procedure Requests 67.7 1.0 4060 n/a
 Procedure Reads from Disk 0.0 0.0 0 0.0 %
 Procedure Writes to Disk 0.0 0.0 0 0.0 %
 Procedure Removals 0.0 0.0 0 n/a

Procedure Requests

“Procedure Requests” reports the number of times that stored
procedures were executed.

When a procedure is executed, there are these possibilities:

• There is an idle copy of the query plan in memory, so it is copied
and used.

• There is no copy of the procedure in memory, or all copies of the
plan in memory are in use, so the procedure must be read from
disk.

Procedure Reads from Disk

“Procedure Reads from Disk” reports the number of times that
stored procedures were read from disk rather than copied in the
procedure cache.

“% of total” is the percentage of procedure reads from disk as a
percentage of the total number of procedure requests. If this is a
relatively high number, it could indicate that the procedure cache is
too small.

Procedure Writes to Disk

“Procedure Writes to Disk” reports the number of procedures
created during the interval. This can be significant if application
programs generate stored procedures.

Procedure Removals

“Procedure Removals” reports the number of times that a procedure
aged out of cache.

SQL Server Performance and Tuning Guide 19-63

Sybase SQL Server Release 11.0.x Memory Management

Memory Management

Memory management reports on the number of pages allocated and
deallocated during the sample interval.

Sample Output for Memory Management

The following sample shows sp_sysmon output for the “Memory
Management” category.

MemMemory Management per sec per xact count % of total
--------------------------- --------- --------- ------- ----------
 Pages Allocated 0.0 0.0 0 n/a
 Pages Released 0.0 0.0 0 n/a

Pages Allocated

“Pages Allocated” reports the number of times that a new page was
allocated in memory.

Pages Released

“Pages Released” reports the number of times that a page was freed.

Recovery Management

This data indicates the number of checkpoints caused by the normal
checkpoint process, the number of checkpoints initiated by the
housekeeper task, and the average length of time for each type. This
information is helpful for setting the recovery and housekeeper
parameters correctly.

Sample Output for Recovery Management

The following sample shows sp_sysmon output for the “Recovery
Management” category.

19-64 Monitoring SQL Server Performance with sp_sysmon

Recovery Management Sybase SQL Server Release 11.0.x

Recovery Management

 Checkpoints per sec per xact count % of total
 ------------------------- --------- --------- ------- ----------
 # of Normal Checkpoints 0.00117 0.00071 1 n/a
 # of Free Checkpoints 0.00351 0.00213 3 n/a
 ------------------------- --------- --------- -------
 Total Checkpoints 0.00468 0.00284 4

 Avg Time per Normal Chkpt 0.01050 seconds
 Avg Time per Free Chkpt 0.16221 seconds

Checkpoints

Checkpoints write all dirty pages (pages that have been modified in
memory, but not written to disk) to the database device. SQL Server’s
automatic (normal) checkpoint mechanism works to maintain a
minimum recovery interval. By tracking the number of log records in
the transaction log since the last checkpoint was performed, it
estimates whether the time required to recover the transactions
exceeds the recovery interval. If so, the checkpoint process scans all
caches and writes all changed data pages to the database device.

When SQL Server has no user tasks to process, a housekeeper task
automatically begins writing dirty buffers to disk. Because these
writes are done during the server’s idle cycles, they are known as
“free writes.” They result in improved CPU utilization and a
decreased need for buffer washing during transaction processing.

If the housekeeper process finishes writing all dirty pages in all
caches to disk, it checks the number of rows in the transaction log
since the last checkpoint. If there are more than 100 log records, it
issues a checkpoint. This is called a “free checkpoint” because it
requires very little overhead. In addition, it reduces future overhead
for normal checkpoints.

Number of Normal Checkpoints

“# of Normal Checkpoints” is the number of checkpoints caused by
the normal checkpoint process.

If the normal checkpoint is doing most of the work, and especially if
the time required is lengthy, it might make sense to increase the
number of checkpoints performed by the housekeeper task.

See “recovery interval in minutes” on page 11-18, and
“Synchronizing a Database and Its Transaction Log: Checkpoints” on

SQL Server Performance and Tuning Guide 19-65

Sybase SQL Server Release 11.0.x Recovery Management

page 18-3 in the System Administration Guide for information about
changing the number of normal checkpoints.

Number of Free Checkpoints

“# of Free Checkpoints” is the number of checkpoints initiated by the
housekeeper task. The housekeeper only performs checkpoints to
the log when it has cleared all dirty pages from all configured caches.

If the housekeeper is doing most of the checkpoints, you can
probably increase the recovery interval without affecting
performance or actual recovery time. Increasing the recovery
interval reduces the number of normal checkpoints and the overhead
incurred by them.

You can use the housekeeper free write percent parameter to configure the
maximum percentage by which the housekeeper task can increase
database writes. For more information about configuring the
housekeeper task, see “How the Housekeeper Task Improves CPU
Utilization” on page 17-9 and “housekeeper free write percent” on
page 11-75 in the System Administration Guide.

Total Checkpoints

“Total Checkpoints” is the combined number of normal and free
checkpoints that occurred during the interval.

Average Time per Normal Checkpoint

“Avg Time per Normal Chkpt” is the time, on average over the
sample interval, that normal checkpoints lasted.

Average Time per Free Checkpoint

“Avg Time per Free Chkpt” is the time, on average over the sample
interval, that free (or housekeeper) checkpoints lasted.

Increasing the Housekeeper Batch Limit

The housekeeper process has a built-in batch limit to avoid
overloading disk I/O for individual devices. By default, the batch
size for housekeeper writes is set to 3. As soon as the housekeeper
detects that it has issued 3 I/Os to a single device, it stops processing

19-66 Monitoring SQL Server Performance with sp_sysmon

Disk I/O Management Sybase SQL Server Release 11.0.x

in the current buffer pool and begins checking for dirty pages in
another pool. If the writes from the next pool need to go to the same
device, it continues to another pool. Once the housekeeper has
checked all of the pools, it waits until the last I/O it has issued has
completed, and then begins the cycle again.

The default batch limit of 3 is designed to provide good device I/O
characteristics for slow disks. You may get better performance by
increasing the batch size for fast disk drives. This value can be set
globally for all devices on the server, or to different values for disks
with different speeds. This command must be reissued each time
SQL Server is restarted.

This command sets the batch size to 10 for a single device, using the
virtual device number from sysdevices:

dbcc tune(deviochar, 8, "10")

To see the device number, use sp_helpdevice, or this query:

select name, low/16777216
from sysdevices
where status&2=2

 To change the housekeeper’s batch size for all devices on the server,
use -1 in place of a device number:

dbcc tune(deviochar, -1, "5")

Legal values for batch size are 1 to 255. For very fast drives, setting
the batch size as high as 50 has yielded performance improvements
during testing.

You may want to try setting this value higher if:

• The average time for normal checkpoints is high.

• There are no problems with exceeding I/O configuration limits or
contention on the semaphores for the devices.

• The “# of Free Checkpoints” is 0 or very low, that is, the
housekeeper process is not clearing the cache and writing
checkpoints. If you are tuning this parameter, check for I/O
contention and queue lengths.

Disk I/O Management

This category is useful when checking for I/O contention.

The first section prints an overview of disk I/O activity: maximum
outstanding I/Os, I/Os delayed, total requested I/Os, and

SQL Server Performance and Tuning Guide 19-67

Sybase SQL Server Release 11.0.x Disk I/O Management

completed I/Os. A second section includes output for the master
device and for other configured devices, reporting reads, writes, and
semaphore contention.

Sample Output for Disk I/O Management

The following sample shows sp_sysmon output for the “Disk I/O
Management” categories.

Disk I/O Management

 Max Outstanding I/Os per sec per xact count % of total
 ------------------------- --------- --------- ------- ----------
 Server n/a n/a 74 n/a
 Engine 0 n/a n/a 20 n/a
 Engine 1 n/a n/a 21 n/a
 Engine 2 n/a n/a 18 n/a
 Engine 3 n/a n/a 23 n/a
 Engine 4 n/a n/a 18 n/a
 Engine 5 n/a n/a 20 n/a
 Engine 6 n/a n/a 21 n/a
 Engine 7 n/a n/a 17 n/a
 Engine 8 n/a n/a 20 n/a

 I/Os Delayed by
 Disk I/O Structures n/a n/a 0 n/a
 Server Config Limit n/a n/a 0 n/a
 Engine Config Limit n/a n/a 0 n/a
 Operating System Limit n/a n/a 0 n/a

 Total Requested Disk I/Os 202.8 1.7 12261 n/a

 Completed Disk I/O's
 Engine 0 25.0 0.2 1512 12.4 %
 Engine 1 21.1 0.2 1274 10.5 %
 Engine 2 18.4 0.2 1112 9.1 %
 Engine 3 23.8 0.2 1440 11.8 %
 Engine 4 22.7 0.2 1373 11.3 %
 Engine 5 22.9 0.2 1387 11.4 %
 Engine 6 24.4 0.2 1477 12.1 %
 Engine 7 22.0 0.2 1332 10.9 %
 Engine 8 21.2 0.2 1281 10.5 %
 ------------------------- --------- --------- ------- ----------
 Total Completed I/Os 201.6 1.7 12188

 Device Activity Detail

19-68 Monitoring SQL Server Performance with sp_sysmon

Disk I/O Management Sybase SQL Server Release 11.0.x

 /dev/rdsk/c1t3d0s6
 bench_log per sec per xact count % of total
 ------------------------- --------- --------- ------- ----------
 Reads 0.1 0.0 5 0.1 %
 Writes 80.6 0.7 4873 99.9 %
 ------------------------- --------- --------- ------- ----------
 Total I/Os 80.7 0.7 4878 40.0 %

 Device Semaphore Granted 80.7 0.7 4878 100.0 %
 Device Semaphore Waited 0.0 0.0 0 0.0 %

 --

 d_master
 master per sec per xact count % of total
 ------------------------- --------- --------- ------- ----------
 Reads 56.6 0.5 3423 46.9 %
 Writes 64.2 0.5 3879 53.1 %
 ------------------------- --------- --------- ------- ----------
 Total I/Os 120.8 1.0 7302 60.0 %

 Device Semaphore Granted 116.7 1.0 7056 94.8 %
 Device Semaphore Waited 6.4 0.1 388 5.2 %

Maximum Outstanding I/Os

“Max Outstanding I/Os” reports in the “count” column the
maximum number of I/Os pending for SQL Server as a whole (the
first line), and for each SQL Server engine at any point during the
sample interval.

This information can help configure I/O parameters at the server or
operating system level if any of the “I/Os Delayed By” values are
non-zero.

I/Os Delayed By

When the system experiences an I/O delay problem, it is likely that
I/O is blocked by one or more SQL Server or operating system limits.

In most operating systems there is a kernel parameter that limits the
number of asynchronous I/Os that can take place.

SQL Server Performance and Tuning Guide 19-69

Sybase SQL Server Release 11.0.x Disk I/O Management

Disk I/O Structures

“Disk I/O Structures” is the number of I/Os delayed by reaching the
limit on disk I/O structures. When SQL Server exceeds the number
of available disk I/O control blocks, I/O is delayed because SQL
Server requires that tasks get a disk I/O control block before
initiating an I/O request.

If the result is non-zero, try increasing the number of available disk
I/O control blocks by increasing the sp_configure parameter disk i/o
structures. See “disk i/o structures” on page 11-27 in the System
Administration Guide.

Server Configuration Limit

SQL Server can exceed its limit for the number of asynchronous disk
I/O requests that can be outstanding for the entire SQL Server at one
time. You can raise this limit using sp_configure with the max async i/os
per server parameter. See “max async i/os per server” on page 11-58 in
the System Administration Guide.

Engine Configuration Limit

A SQL Server engine can exceed its limit for outstanding
asynchronous disk I/O requests. This is configurable using
sp_configure with the max async i/os per engine parameter. See “max async
i/os per engine” on page 11-57 in the System Administration Guide.

Operating System Limit

The operating system kernel has a per process and per system limit
on the maximum number of asynchronous I/Os that either a process
or the entire system can have pending at any point in time. This
value indicates how often the system has exceeded that limit. See
“disk i/o structures” on page 11-27 in the System Administration
Guide, and consult your operating system documentation.

Requested and Completed Disk I/Os

This data shows the total number of disk I/Os requested by SQL
Server, and the number and percentage of I/Os completed by each
SQL Server engine.

19-70 Monitoring SQL Server Performance with sp_sysmon

Disk I/O Management Sybase SQL Server Release 11.0.x

“Total Requested Disk I/Os” and “Total Completed I/Os” should be
the same or very close. These values will be very different if
requested I/Os are not completing due to saturation.

The value for requested I/Os includes all requests that were initiated
during the sample period, and it is possible that some of them
completed after the sample period ended. These I/Os will not be
included in “Total Completed I/Os”, and will cause the percentage
to be less than 100, when there are no saturation problems.

The reverse is also true. If I/O requests were made before the sample
began and completed during the interval, you would see a “% of
Total” for “Total Completed I/Os” value that is more than 100
percent. If you are checking for saturation, make repeated runs, and
try to develop your stress tests to perform relatively consistent levels
of I/O.

If the data indicates a large number of requested disk I/Os but a
smaller number of completed disk I/Os, there could be some
bottleneck in the operating system that is delaying I/Os.

Total Requested Disk I/Os

“Total Requested Disk I/Os” reports the number of times that SQL
Server requested disk I/Os.

Completed Disk I/Os

“Total Completed Disk I/Os” reports the number of times that each
SQL Server engine completed I/O. “% of total” is the percentage of
times each SQL Server engine completed I/Os as a percentage of the
total number of I/Os completed by all SQL Server engines
combined.

You can also use this information to determine if the operating
system is able to keep pace with disk I/O requests made by all of the
SQL Server engines.

Device Activity Detail

“Device Activity Detail” reports activity on the master device and on
each logical device. It is useful for checking that I/O is well balanced
across the database devices, and for finding a device that might be
delaying I/O. For example, if the “Task Context Switches Due To”
data indicates a heavy amount of device contention, you can use

SQL Server Performance and Tuning Guide 19-71

Sybase SQL Server Release 11.0.x Disk I/O Management

“Device Activity Detail” to figure out which device (or devices) is
causing the problem.

This section prints the following information about I/O for each data
device on the server:

• The logical and physical device names

• The number of reads, writes, and the total number of I/Os

• The number of device semaphores immediately granted on the
device and the number of times a process had to wait for a device
semaphore

Reads and Writes

“Reads” and “Writes” report the number of times that reads or writes
to a device took place. The “% of total” column is the percentage of
reads or writes as a percentage of the total number of I/Os to the
device.

Total I/Os

“Total I/Os” reports the combined number of reads and writes to a
device. The “% of total” column is the percentage of combined reads
and writes for each named device as a percentage of the number of
reads and writes that went to all devices.

When studying this data, one way to evaluate disk I/O usage is to
observe the distribution patterns over the disks. For example, does
the data show that some disks are more heavily used than others? If
so, consider redistributing data with segments. For example, if you
see that a large percentage of all I/O went to a specific named device,
you can investigate the tables residing on the device and then
determine how to remedy the problem. See “Creating Objects on
Segments” on page 13-9.

Device Semaphore Granted and Waited

The “Device Semaphore Granted” and “Device Semaphore Waited”
categories report the number of times that a request for a device
semaphore was granted immediately and the number of times the
semaphore was busy and the task had to wait for the semaphore to
be released. The “% of total” column is the percentage of times the
device the semaphore was granted (or the task had to wait) as a

19-72 Monitoring SQL Server Performance with sp_sysmon

Network I/O Management Sybase SQL Server Release 11.0.x

percentage of the total number of device semaphores requested. This
data is meaningful for SMP environments only.

When SQL Server needs to perform a disk I/O, it gives the task the
semaphore for that device in order to acquire a block I/O structure.
This is important on SMP systems, because it is possible to have
multiple SQL Server engines trying to post I/Os to the same device
simultaneously. This creates contention for that semaphore,
especially if there are hot devices or if the data is not well distributed
across devices.

A large percentage of I/O requests that waited could indicate a
semaphore contention issue. One solution might be to redistribute
the data on the physical devices.

Network I/O Management

“Network I/O Management” reports on the following network
activities for each SQL Server engine:

• Total requested network I/Os

• Network I/Os delayed

• Total TDS packets and bytes received and sent

• Average size of packets received and sent

This data is broken down by SQL Server engine, because each SQL
Server engine does its own networking. Imbalances are usually due
to one of two causes:

• There are more engines than tasks, so the engines with no work to
perform report no I/O.

• Most tasks are sending and receiving short packets, but another
tasks is performing tasks with heavy I/O, such as a bulk copy.

Sample Output for Network I/O Management

The following sample shows sp_sysmon output for the “Network I/O
Management” categories.

SQL Server Performance and Tuning Guide 19-73

Sybase SQL Server Release 11.0.x Network I/O Management

Network I/O Management

 Total Network I/O Requests 240.1 2.0 14514 n/a
 Network I/Os Delayed 0.0 0.0 0 0.0 %

 Total TDS Packets Received per sec per xact count % of total
 ------------------------- --------- --------- ------- ----------
 Engine 0 7.9 0.1 479 6.6 %
 Engine 1 12.0 0.1 724 10.0 %
 Engine 2 15.5 0.1 940 13.0 %
 Engine 3 15.7 0.1 950 13.1 %
 Engine 4 15.2 0.1 921 12.7 %
 Engine 5 17.3 0.1 1046 14.4 %
 Engine 6 11.7 0.1 706 9.7 %
 Engine 7 12.4 0.1 752 10.4 %
 Engine 8 12.2 0.1 739 10.2 %
 ------------------------- --------- --------- ------- ----------
 Total TDS Packets Rec'd 120.0 1.0 7257

 Total Bytes Received per sec per xact count % of total
 ------------------------- --------- --------- ------- ----------
 Engine 0 562.5 4.7 34009 6.6 %
 Engine 1 846.7 7.1 51191 10.0 %
 Engine 2 1100.2 9.2 66516 13.0 %
 Engine 3 1112.0 9.3 67225 13.1 %
 Engine 4 1077.8 9.0 65162 12.7 %
 Engine 5 1219.8 10.2 73747 14.4 %
 Engine 6 824.3 6.9 49835 9.7 %
 Engine 7 879.2 7.3 53152 10.4 %
 Engine 8 864.2 7.2 52244 10.2 %
 ------------------------- --------- --------- ------- ----------
 Total Bytes Rec'd 8486.8 70.7 513081

 Avg Bytes Rec'd per Packet n/a n/a 70 n/a

 --

 Total TDS Packets Sent per sec per xact count % of total
 ------------------------- --------- --------- ------- ----------
 Engine 0 7.9 0.1 479 6.6 %
 Engine 1 12.0 0.1 724 10.0 %
 Engine 2 15.6 0.1 941 13.0 %
 Engine 3 15.7 0.1 950 13.1 %
 Engine 4 15.3 0.1 923 12.7 %
 Engine 5 17.3 0.1 1047 14.4 %
 Engine 6 11.7 0.1 705 9.7 %
 Engine 7 12.5 0.1 753 10.4 %
 Engine 8 12.2 0.1 740 10.2 %

19-74 Monitoring SQL Server Performance with sp_sysmon

Network I/O Management Sybase SQL Server Release 11.0.x

 ------------------------- --------- --------- ------- ----------
 Total TDS Packets Sent 120.1 1.0 7262

 Total Bytes Sent per sec per xact count % of total
 ------------------------- --------- --------- ------- ----------
 Engine 0 816.1 6.8 49337 6.6 %
 Engine 1 1233.5 10.3 74572 10.0 %
 Engine 2 1603.2 13.3 96923 13.0 %
 Engine 3 1618.5 13.5 97850 13.1 %
 Engine 4 1572.5 13.1 95069 12.7 %
 Engine 5 1783.8 14.9 107841 14.4 %
 Engine 6 1201.1 10.0 72615 9.7 %
 Engine 7 1282.9 10.7 77559 10.4 %
 Engine 8 1260.8 10.5 76220 10.2 %
 ------------------------- --------- --------- ------- ----------
 Total Bytes Sent 12372.4 103.0 747986

 Avg Bytes Sent per Packet n/a n/a 103 n/a

Total Requested Network I/Os

“Total Requested Network I/Os” represents the total TDS packets
received and sent.

If you know the number of packets per second that the network can
handle, this data is useful for determining whether the SQL Server
system is challenging the network bandwidth.

The issues are the same whether the I/O is inbound or outbound. If
SQL Server receives a command that is larger than the TDS packet
size, SQL Server will wait to begin processing until it receives the full
command. Therefore, commands that require more than one packet
are slower to execute and take up more I/O resources.

If the average bytes per packet is near the default packet size
configured for your server, you may want to configure larger packet
sizes for some connections. You can configure the network packet
size for all connections or allow certain connections to log in using
larger packet sizes. See “Changing Network Packet Sizes” on page
16-3 and “default network packet size” on page 11-48 in the System
Administration Guide.

SQL Server Performance and Tuning Guide 19-75

Sybase SQL Server Release 11.0.x Network I/O Management

Network I/Os Delayed

“Network I/Os Delayed” is the number of times I/O was delayed. If
this number is consistently non-zero, consult with your network
administrator.

Total TDS Packets Received

“Total TDS Packets Rec’d” represents the number of times SQL
Server received a packet from a client application.

Total Bytes Received

“Total Bytes Rec’d” is the number of bytes received by each SQL
Server engine during the sample interval.

Average Bytes Rec’d per Packet

The average number of bytes received by the SQL Server engine per
packet during the sample interval.

Total TDS Packets Sent

“Total TDS Packets Sent” represents the number of times SQL Server
sends a packet to a client application.

Total Bytes Sent

“Total Bytes Sent” is the number of bytes sent by each SQL Server
engine during the sample interval.

Average Bytes Sent per Packet

The average number of bytes sent by the SQL Server engine per
packet during the sample interval.

Reducing Packet Overhead

If your applications use stored procedures, you may see improved
throughput by turning off the “rows affected” message sent after

19-76 Monitoring SQL Server Performance with sp_sysmon

Network I/O Management Sybase SQL Server Release 11.0.x

each select statement that is performed in a stored procedure. This
message is used in some client products and may be expected in
Client Library programs, but many clients simply discard these
results. Before making a decision to disable this message, test the
setting with your client products and Open Client programs to
determine whether it affects them.

Turning off these messages can increase throughput slightly in some
environments, while it has virtually no effect in others. To turn off the
messages, issue the command:

dbcc tune (doneinproc, 0)

To turn them on, use:

dbcc tune (doneinproc, 1)

 This command must be reissued each time SQL Server is restarted.

SQL Server Performance and Tuning Guide Glossary-1

Glossary

access method
The method used to find the data rows needed to satisfy a query. Access methods
include: table scan, nonclustered index access, clustered index access.

affinity
See process affinity.

aggregate function
A function that works on a set of cells to produce a single answer or set of answers,
one for each subset of cells. The aggregate functions available in Transact-SQL are:
average (avg), maximum (max), minimum (min), sum (sum), and count of the number
of items (count).

allocation page
The first page of an allocation unit, which tracks the use of all pages in the
allocation unit.

allocation unit
A logical unit of 1/2 megabyte. The disk init command initializes a new database file
for SQL Server and divides it into 1/2 megabyte pieces called allocation units.

argument
A value supplied to a function or procedure that is required to evaluate the
function.

arithmetic expression
An expression that contains only numeric operands and returns a single numeric
value. In Transact-SQL, the operands can be of any SQL Server numeric datatype.
They can be functions, variables, parameters, or they can be other arithmetic
expressions. Synonymous with numeric expression.

arithmetic operators
Addition (+), subtraction (-), division (/), and multiplication (*) can be used with
numeric columns. Modulo (%) can be used with int, smallint, and tinyint columns
only.

audit trail
Audit records stored in the sybsecurity database.

Glossary-2

Sybase SQL Server Release 11.0.x

auditing
Recording security-related system activity that can be used to detect penetration of
the system and misuse of system resources.

automatic recovery
A process that runs every time SQL Server is stopped and restarted. The process
ensures that all transactions that completed before the server went down are brought
forward and all incomplete transactions are rolled back.

B-tree
Short for balanced tree, or binary tree. SQL Server uses B-tree indexing. All leaf
pages in a B-tree are the same distance from the root page of the index. B-trees
provide consistent and predictable performance, good sequential and random
record retrieval, and a flat tree structure.

backup
A copy of a database or transaction log, used to recover from a media failure.

batch
One or more Transact-SQL statements terminated by an end-of-batch signal, which
submits them to SQL Server for processing.

Boolean expression
An expression that evaluates to TRUE (1), or FALSE (0). Boolean expressions are
often used in control of flow statements, such as if or while conditions.

buffer
A unit of storage in a memory pool. A single data cache can have pools configured
for different I/O sizes, or buffer sizes. All buffers in a pool are the same size. If a
pool is configured for 16K I/O, all buffers are 16K, holding eight data pages.
Buffers are treated as a unit; all data pages in a buffer are simultaneously read,
written, or flushed from cache.

built-in functions
A wide variety of functions that take one or more parameters and return results.
The built-in functions include mathematical functions, system functions, string
functions, text functions, date functions, and type conversion functions.

bulk copy
The utility for copying data in and out of databases, called bcp.

SQL Server Performance and Tuning Guide Glossary-3

Sybase SQL Server Release 11.0.x

cache hit ratio
For many processes, SQL Server uses an in-memory cache. The cache hit ratio is the
percentage of times a needed page or result was found in the cache. For data pages,
the cache hit ratio is the percentage of page requests that are serviced by the data
cache compared to requests that require disk I/O.

Cartesian product
All the possible combinations of the rows from each of the tables specified in a join.
The number of rows in the Cartesian product is equal to the number of rows in the
first table times the number of rows in the second table. Once the Cartesian
product is formed, the rows that do not satisfy the join conditions are eliminated.

chained transaction mode
Determines whether or not SQL Server automatically starts a new transaction on
the next data retrieval or data modification statement. When set chained is turned on
outside a transaction, the next data retrieval or data modification statement begins
a new transaction. This mode is ANSI compliant. It ensures that every SQL data
retrieval and data modification statement occur inside a transaction. Chained
transaction mode may be incompatible with existing Transact-SQL programs. The
default value is off. Applications which require ANSI SQL (such as the ESQL
precompiler) should automatically set the chained option on at the beginning of each
session.

character expression
An expression that returns a single character-type value. It can include literals,
concatenation operators, functions, and column identifiers.

cheap direct update
A type of direct update operation, performed when the length of the data row
changes. The changed data row remains on the same data page, but other rows on
the page may move. Contrast to in-place update and expensive direct update.

check constraint
A check constraint limits what values users can insert into a column of a table. A
check constraint specifies a search_condition which any value must pass before it is
inserted into the table.

checkpoint
The point at which all data pages that have been changed are guaranteed to have
been written to the database device.

Glossary-4

Sybase SQL Server Release 11.0.x

clauses
A set of keywords and parameters that tailor a Transact-SQL command to meet a
particular need. Also called a keyword phrase.

client cursor
A cursor declared through Open Client calls or Embedded-SQL. The Open Client
keeps track of the rows returned from SQL Server and buffers them for the
application. Updates and deletes to the result set of client cursors can only be done
through the Open Client calls.

clustered index
An index in which the physical order and the logical (indexed) order is the same.
The leaf level of a clustered index represents the data pages themselves.

column
The logical equivalent of a field. A column contains an individual data item within
a row or record.

column-level constraint
Limit the values of a specified column. Place column-level constraints after the
column name and datatype in the create table statement, before the delimiting
comma.

command
An instruction that specifies an operation to be performed by the computer. Each
command or SQL statement begins with a keyword, such as insert, that names the
basic operation performed. Many SQL commands have one or more keyword
phrases, or clauses, that tailor the command to meet a particular need.

comparison operators
Used to compare one value to another in a query. Comparison operators include
equal to (=) greater than (>), less than (<), greater than or equal to (>=), less than or
equal to (<=), not equal to (!=), not greater than (!>), and not less than (!<).

compatible datatypes
Types that SQL Server automatically converts for implicit or explicit comparison.

composite indexes
Indexes which involve more than one column. Use composite indexes when two or
more columns are best searched as a unit because of their logical relationship.

SQL Server Performance and Tuning Guide Glossary-5

Sybase SQL Server Release 11.0.x

composite key
An index key that includes two or more columns; for example, authors(au_lname,
au_fname).

concatenation
Combine expressions to form longer expressions. The expressions can include any
combination of binary or character strings, or column names.

constant expression
An expression that returns the same value each time the expression is used. In
Transact-SQL syntax statements, constant_expression does not include variables
or column identifiers.

control page
A reserved database page that stores information about the last page of a partition.

control-of-flow language
Transact-SQL’s programming-like constructs (such as if, else, while, and goto) that
control the flow of execution of Transact-SQL statements.

correlated subquery
A subquery that cannot be evaluated independently, but depends on the outer
query for its results. Also called a repeating subquery, since the subquery is
executed once for each row that might be selected by the outer query. See also
nested query.

correlation names
Distinguish the different roles a particular table plays in a query, especially a
correlated query or self-join. Assign correlation names in the from clause and
specify the correlation name after the table name:

select au1.au_fname, au2.au_fname
from authors au1, authors au2
where au1.zip = au2.zip

covered query
See index covering.

covering
See index covering.

Glossary-6

Sybase SQL Server Release 11.0.x

cursor
A symbolic name associated with a Transact-SQL select statement through a
declaration statement. Cursors consist of two parts: the cursor result set and the
cursor position.

cursor result set
The set of rows resulting from the execution of the select statement associated with
the cursor.

data cache
Also referred to as named cache or cache. A cache is an area of memory within SQL
Server that contains the in-memory images of database pages and the data
structures required to manage the pages. By default, SQL Server has a single data
cache named “default data cache.” Additional caches configured by users are also
called “user defined caches.” Each data cache is given a unique name that is used
for configuration purposes.

data definition
The process of setting up databases and creating database objects such as tables,
indexes, rules, defaults, procedures, triggers, and views.

data dictionary
The system tables that contain descriptions of the database objects and how they
are structured.

data integrity
The correctness and completeness of data within a database.

data modification
Adding, deleting, or changing information in the database with the insert, delete,
and update commands.

data retrieval
Requesting data from the database and receiving the results. Also called a query.

database
A set of related data tables and other database objects that are organized and
presented to serve a specific purpose.

SQL Server Performance and Tuning Guide Glossary-7

Sybase SQL Server Release 11.0.x

database device
A device dedicated to the storage of the objects that make up databases. It can be
any piece of disk or a file in the file system that is used to store databases and
database objects.

database object
One of the components of a database: table, view, index, procedure, trigger,
column, default, or rule.

Database Owner
The user who creates a database. A Database Owner has control over all the
database objects in that database. The login name for the Database Owner is “dbo.”

datatype
Specifies what kind of information each column will hold, and how the data will
be stored. Datatypes include char, int, money, and so on. Users can construct their
own datatypes based on the SQL Server system datatypes.

datatype conversion function
A function which is used to convert expressions of one datatype into another
datatype, whenever these conversions are not performed automatically by SQL
Server.

datatype hierarchy
The hierarchy that determines the results of computations using values of different
datatypes.

dbo
In a user’s own database, SQL Server recognizes the user as “dbo.” A database
owner logs into SQL Server using his or her assigned login name and password.

deadlock
A situation which arises when two users, each having a lock on one piece of data,
attempt to acquire a lock on the other’s piece of data. The SQL Server detects
deadlocks, and kills one user’s process.

default
The option chosen by the system when no other option is specified.

Glossary-8

Sybase SQL Server Release 11.0.x

deferred update
An update operation that takes place in two steps. First, the log records for deleting
existing entries and inserting new entries are written to the log, but only the delete
changes to the data pages and indexes take place. In the second step, the log pages
are rescanned, and the insert operations are performed on the data pages and
indexes. Compare to direct update.

demand lock
A demand lock prevents any more shared locks from being set on a data resource
(table or data page). Any new shared lock request has to wait for the demand lock
request to finish.

density
The average fraction of all the rows in an index that have the same key value.
Density is 1 if all of the data values are the same and 1/N if every data value is
unique.

dependent
Data is logically dependent on other data when master data in one table must be
kept synchronized with detail data in another table in order to protect the logical
consistency of the database.

detail
Data that logically depends on data in another table. For example, in the pubs2
database, the salesdetail table is a detail table. Each order in the sales table can have
many corresponding entries in salesdetail. Each item in salesdetail is meaningless
without a corresponding entry in the sales table.

device
Any piece of disk (such as a partition) or a file in the file system used to store
databases and their objects.

direct update
An update operation that takes place in a single step, that is, the log records are
written and the data and index pages are changed. Direct updates can be
performed in three ways: in-place updates, on-page updates, and delete/insert
direct updates. Compare to deferred update.

dirty read
Occurs when one transaction modifies a row, and then a second transaction reads
that row before the first transaction commits the change. If the first transaction rolls
back the change, the information read by the second transaction becomes invalid.

SQL Server Performance and Tuning Guide Glossary-9

Sybase SQL Server Release 11.0.x

disk allocation pieces
Disk allocation pieces are the groups of allocation units from which SQL Server
constructs a new database file. The minimum size for a disk allocation piece is one
allocation unit, or 256 2KB pages.

disk initialization
The process of preparing a database device or file for SQL Server use. Once the
device is initialized, it can be used for storing databases and database objects. The
command used to initialize a database device is disk init.

disk mirror
A duplicate of a SQL Server database device. All writes to the device being mirrored
are copied to a separate physical device, making the second device an exact copy of
the device being mirrored. If one of the devices fails, the other contains an up-to-date
copy of all transactions. The command disk mirror starts the disk mirroring process.

dump striping
Interleaving of dump data across several dump volumes.

dump volume
A single tape, partition, or file used for a database or transaction dump. A dump
can span many volumes, or many dumps can be made to a single tape volume.

dynamic dump
A dump made while the database is active.

dynamic index
A worktable built by SQL Server for the resolution of queries using or. As each
qualifying row is retrieved, its row ID is stored in the worktable. The worktable is
sorted to remove duplicates, and the row IDs are joined back to the table to return
the values.

engine
A process running a SQL Server that communicates with other server processes
using shared memory. An engine can be thought of as one CPU’s worth of
processing power. It does not represent a particular CPU on a machine. Also referred
to as “server engine.”A SQL Server running on a uniprocessor machine will always
have one engine, engine 0. A SQL Server running on a multiprocessor machine can
have one or more engines. The maximum number of engines running on SQL Server
can be reconfigured using the max online engines configuration variable.

Glossary-10

Sybase SQL Server Release 11.0.x

entity
A database or a database object that can be identified by a unique ID and that is
backed by database pages. Examples of entities: the database pubs2, the log for
database pubs2, the clustered index for table titles in database pubs2, the table
authors in database pubs2.

equijoin
A join based on equality.

error message
A message that SQL Server issues, usually to the user’s terminal, when it detects an
error condition.

exclusive locks
Locks which prevent any other transaction from acquiring a lock until the original
lock is released at the end of a transaction, always applied for update (insert, update,
delete) operations.

execute cursor
A cursor which is a subset of client cursors whose result set is defined by a stored
procedure which has a single select statement. The stored procedure can use
parameters. The values of the parameters are sent through Open Client calls.

existence join
A type of join performed in place of certain subqueries. Instead of the usual nested
iteration through a table that returns all matching values, an existence join returns
TRUE when it finds the first value and stops processing. If no matching value is
found, it returns FALSE.

expensive direct update
A type of direct update operation. The row is deleted from its original location,
and inserted at a new location.

expression
A computation, column data, a built-in function, or a subquery that returns values.

extent
Whenever a table or index requires space, SQL Server allocates a block of 8 2K
pages, called an extent, to the object.

SQL Server Performance and Tuning Guide Glossary-11

Sybase SQL Server Release 11.0.x

fetch
A fetch moves the current cursor position down the cursor result set. Also called a
cursor fetch.

fetch-and-discard strategy
Reading pages into the data cache at the LRU end of the cache chain, so that the
same buffer is available for reuse immediately. This strategy keeps select
commands that require large numbers of page reads from flushing other data from
the cache.

field
A data value that describes one characteristic of an entity. Also called a column.

foreign key
A key column in a table that logically depends on a primary key column in another
table. Also, a column (or combination of columns) whose values are required to
match a primary key in some other table.

fragment
When you allocate only a portion of the space on a device with create or alter database,
that portion is called a fragment.

free-space threshold
A user-specified threshold that specifies the amount of space on a segment, and the
action to be taken when the amount of space available on that segment is less than
the specified space.

functions
See built-in functions.

global variable
System-defined variables that SQL Server updates on an ongoing basis. For
example, @@error contains the last error number generated by the system.

grouped aggregate
See vector aggregate.

Halloween problem
An anomaly associated with cursor updates, whereby a row seems to appear twice
in the result set. This happens when the index key is updated by the client and the
updated index row moves farther down in the result set.

Glossary-12

Sybase SQL Server Release 11.0.x

heap table
A table where all data is stored in a single page chain. For example, an
unpartitioned table that has no clustered index stores all data in a single “heap” of
pages.

identifier
A string of characters used to identify a database object, such as a table name or
column name.

implicit conversions
Datatype conversions that SQL Server automatically performs to compare
datatypes.

in-place update
A type of direct update operation. An in-place update does not cause data rows to
move on the data page. Compare to on-page update and insert/delete direct
update.

index
A database object that consists of key values from the data tables, and pointers to
the pages that contain those values. Indexes speed up access to data rows.

index covering
A data access condition where the leaf-level pages of a nonclustered index contain
the data needed to satisfy a query. The index must contain all columns in the select
list as well as the columns in the query clauses, if any. The server can satisfy the
query using only the leaf level of the index. When an index covers a query, the
server does not access the data pages.

index selectivity
The ratio of duplicate key values in an index. An index is selective when it lets the
optimizer pinpoint a single row, such as a search for a unique key. An index on
nonunique entries is less selective. An index on values such as “M” or “F” (for male
or female) is extremely nonselective.

initial response time
The time required to return the first result row of a query to a user. For some
queries, initial response time can be very brief, even though time to return the full
result set can take much longer.

inner query
Another name for a subquery.

SQL Server Performance and Tuning Guide Glossary-13

Sybase SQL Server Release 11.0.x

int
A signed 32-bit integer value.

integrity constraints
Form a model to describe the database integrity in the create table statement.
Database integrity has two complementary components: validity, which
guarantees that all false information is excluded from the database, and
completeness, which guarantees that all true information is included in the
database.

intent lock
Indicates the intention to acquire a share or exclusive lock on a data page.

isolation level
Specifies the kinds of actions that are not permitted while the current transactions
execute; also called “locking level.” The ANSI standard defines four levels of
isolation for SQL transactions. Level 0 prevents other transactions from changing
data already modified by an uncommitted transaction. Level 1 prevents dirty
reads. Level 2 (not supported by SQL Server) also prevents non-repeatable reads.
Level 3 prevents both types of reads and phantoms; it is equivalent to doing all
queries with holdlock. The user controls the isolation level with the set option
transaction isolation level or with the at isolation clause of select or readtext. The default is
level 1.

join
A basic operation in a relational system which links the rows in two or more tables
by comparing the values in specified columns.

join selectivity
An estimate of the number of rows from a particular table that will join with a row
from another table. If index statistics are available for the join column, SQL Server
bases the join selectivity on the density of the index (the average number of
duplicate rows). If no statistics are available, the selectivity is 1/N, where N is the
number of rows in the smaller table.

kernel
A module within SQL Server that acts as the interface between SQL Server and the
operating system.

key
A field used to identify a record, often used as the index field for a table.

Glossary-14

Sybase SQL Server Release 11.0.x

key value
Any value that is indexed.

keyword
A word or phrase that is reserved for exclusive use by Transact-SQL. Also known
as a reserved word.

keyword phrases
A set of keywords and parameters that tailor a Transact-SQL command to meet a
particular need. Also called a clause.

language cursor
A cursor declared in SQL without using Open Client. As with SQL Server cursors,
Open Client is completely unaware of the cursors and the results are sent back to
the client in the same format as a normal select.

last-chance threshold
A default threshold in SQL Server that suspends or kills user processes if the
transaction log has run out of room. This threshold leaves just enough space for the
de-allocation records for the log itself. The last-chance threshold always calls a
procedure named sp_thresholdaction. This procedure is not supplied by Sybase, it must
be written by the System Administrator.

leaf level
The level of an index at which all key values appear in order. For SQL Server
clustered indexes, the leaf level and the data level are the same. For nonclustered
indexes, the last index level above the data level is the leaf level, since key values
for all of the data rows appear there in sorted order.

livelock
A request for an exclusive lock that is repeatedly denied because a series of
overlapping shared locks keeps interfering. SQL Server detects the situation after
four denials, and refuses further shared locks.

local variables
User-defined variables defined with a declare statement.

lock promotion threshold
The number of page locks allowed in a table before SQL Server attempts to issue a
table lock. If the table lock is successful, SQL Server releases the page locks.

SQL Server Performance and Tuning Guide Glossary-15

Sybase SQL Server Release 11.0.x

locking
The process of restricting access to resources in a multi-user environment to
maintain security and prevent concurrent access problems. SQL Server
automatically applies locks to tables or pages.

locking level
See isolation level.

logical expression
An expression that evaluates to TRUE (1), FALSE (0) or UNKNOWN (NULL).
Logical expressions are often used in control of flow statements, such as if or while
conditions.

logical key
The primary, foreign, or common key definitions in a database design that define
the relationship between tables in the database. Logical keys are not necessarily the
same as the physical keys (the keys used to create indexes) on the table.

logical operators
The operators and, or, and not. All three can be used in where clauses. The operator
and joins two or more conditions and returns results when all of the conditions are
true; or connects two or more conditions and returns results when any of the
conditions is true.

logical read
The process of accessing a data or index page already in memory to satisfy a query.
Compare to physical read.

login
The name a user uses to log into SQL Server. A login is valid if SQL Server has an
entry for that user in the system table syslogins.

LRU cache strategy
A caching strategy for replacing the least-recently-used buffers in the data cache. A
clean data page is taken from the LRU end of the data cache to store a page read
from disk. The new page is placed on the data cache’s page chain at the MRU end
of the cache, so that it stays in memory.

Master Database
Controls the user databases and the operation of SQL Server as a whole. Known as
master, it keeps track of such things as user accounts, ongoing processes, and
system error messages.

Glossary-16

Sybase SQL Server Release 11.0.x

master table
A table that contains data on which data in another table logically depends. For
example, in the pubs2 database, the sales table is a master table. The salesdetail table
holds detail data which depends on the master data in sales. The detail table
typically has a foreign key that joins to the primary key of the master table.

master-detail relationship
A relationship between sets of data where one set of data logically depends on the
other. For example, in the pubs2 database, the sales table and salesdetail table have a
master-detail relationship. See detail and master table.

matching index scan
A scan using a nonclustered index when the query has a where clause (search
argument) on a set of columns, and the columns form a prefix subset of keys on the
index. The index is used to position the search at the first matching key, and then
scanned forward for additional matches on the specified index key columns. The
scan stops at the first row that does not match. Matching index scans are quite fast
and efficient. Compare to nonmatching index scan.

memory pool
An area of memory within a data cache that contains a set of buffers linked
together on a MRU/LRU (most recently used/least recently used) list.

message number
The number that uniquely identifies an error message.

mirror
See disk mirror.

model database
A template for new user databases. The installation process creates model when
SQL Server is installed. Each time the create database command is issued, SQL Server
makes a copy of model and extends it to the size requested, if necessary.

MRU replacement strategy
A caching strategy for table scans and nonclustered index scans. The optimizer
chooses this strategy when it determines that the pages need to be accessed only
once for a particular query. Instead of adding all of the pages to the MRU/LRU
chain, the pages are immediately flushed as soon as the query finishes examining
them, and the next page for the query is read into the buffer.

SQL Server Performance and Tuning Guide Glossary-17

Sybase SQL Server Release 11.0.x

natural join
A join in which the values of the columns being joined are compared on the basis
of equality, and all the columns in the tables are included in the results, except that
only one of each pair of joined columns is included.

nested queries
select statements that contain one or more subqueries.

nested select statements
See nested queries.

nonclustered index
An index that stores key values and pointers to data. The leaf level points to data
pages rather than containing the data itself.

nonmatching index scan
A scan using a nonclustered index when the search arguments do not form a prefix
subset of the index key columns, although they match some parts of the composite
key. The scan is performed using the index from the lowest key value to the highest
key value, searching for the matches specified in the query. This type of scan is
performed on nonclustered indexes when all columns for a table referenced in the
query are included in the index. Although cheaper than a table scan, a non-
matching index scan is more expensive than a matching index scan.

non-repeatable read
Occur when one transaction reads a row and then a second transaction modifies
that row. If the second transaction commits its change, subsequent reads by the
first transaction yield different results than the original read.

normalization rules
The standard rules of database design in a relational database management
system.

not-equal join
A join on the basis of inequality.

null
Having no explicitly assigned value. NULL is not equivalent to zero, or to blank. A
value of NULL is not considered to be greater than, less than, or equivalent to any
other value, including another value of NULL.

Glossary-18

Sybase SQL Server Release 11.0.x

numeric expression
An expression that contains only numeric values and returns a single numeric
value. In Transact-SQL, the operands can be of any SQL Server numeric datatype.
They can be functions, variables, parameters, or they can be other arithmetic
expressions. Synonymous with arithmetic expression.

Object Allocation Map (OAM)
Pointers to the allocation pages for each allocation unit.

object permissions
Permissions that regulate the use of certain commands (data modification
commands, plus select, truncate table and execute) to specific tables, views or columns.
See also command permissions.

objects
See database objects.

operating system
A group of programs that translates your commands to the computer, so that you
can perform such tasks as creating files, running programs, and printing
documents.

operators
Symbols that act on two values to produce a third. See comparison operators,
logical operators, or arithmetic operators.

optimizer
SQL Server code that analyzes queries and database objects and selects the
appropriate query plan. The SQL Server optimizer is a cost-based optimizer. It
estimates the cost of each permutation of table accesses in terms of CPU cost and
I/O cost.

OR Strategy
An optimizer strategy for resolving queries using or and queries using in (values list).
Indexes are used to retrieve and qualify data rows from a table. The row IDs are
stored in a worktable. When all rows have been retrieved, the worktable is sorted
to remove duplicates, and the row IDs are used to retrieve the data from the table.

outer join
A join in which both matching and nonmatching rows are returned. The operators
= and = are used to indicate that all the rows in the first or second tables should
be returned, regardless of whether or not there is a match on the join column.

SQL Server Performance and Tuning Guide Glossary-19

Sybase SQL Server Release 11.0.x

outer query
Another name for the principal query in a statement containing a subquery.

overflow page
A data page for a table with a nonunique clustered index, which contains only
rows that have duplicate keys. The key value is the same as the last key on the
previous page in the chain. There is no index page pointing directly to an overflow
page.

page chain
See partition.

page split
Page splits occur when new data or index rows need to be added to a page, and
there is not enough room for the new row. Usually, the data on the existing page is
split approximately evenly between the newly allocated page and the existing
page.

page stealing
Page stealing occurs when SQL Server allocates a new last page for a partition from
a device or extent that was not originally assigned to the partition.

parameter
An argument to a stored procedure.

partition
A linked chain of database pages that stores a database object.

performance
The speed with which SQL Server processes queries and returns results.
Performance is affected by several factors, including indexes on tables, use of raw
partitions compared to files, and segments.

phantoms
Occur when one transaction reads a set of rows that satisfy a search condition, and
then a second transaction modifies the data (through an insert, delete, update, and so
on). If the first transaction repeats the read with the same search conditions, it
obtains a different set of rows.

Glossary-20

Sybase SQL Server Release 11.0.x

physical key
A column name, or set of column names, used in a create index statement to define
an index on a table. Physical keys on a table are not necessarily the same as the
logical keys.

physical read
A disk I/O to access a data, index, or log page. SQL Server estimates physical reads
and logical reads when optimizing queries. See logical read.

point query
A query that restricts results to a single specific value, usually using the form
“where column_value = search_argument”.

precision
The maximum number of decimal digits that can be stored by numeric and decimal
datatypes. The precision includes all digits, both to the right and to the left of the
decimal point.

prefetch
The process of performing multipage I/O’s on a table, nonclustered index, or the
transaction log. For logs, the server can fetch up to 256 pages, for nonlog tables and
indexes, the server can fetch up to 8 pages.

prefix subset
Used to refer to keys in a composite index. Search values form a prefix subset when
leading columns of the index are specified. For an index on columns A, B, and C,
these are prefix subsets: A, AB, ABC. These are not: AC, B, BC, C. See matching
index scan and non-matching index scan for more information.

primary key
The column or columns whose values uniquely identify a row in a table.

primary key constraint
A primary key constraint is a unique constraint which does not permit null values
for the component key columns. There can only be one primary key constraint per
table. The primary key constraint creates a unique index on the specified columns
to enforce this data integrity.

process
An execution environment scheduled onto physical CPUs by the operating
system.

SQL Server Performance and Tuning Guide Glossary-21

Sybase SQL Server Release 11.0.x

process affinity
Describes a process in which a certain SQL Server task runs only on a certain
engine, or that a certain engine runs only on a certain CPU.

projection
One of the basic query operations in a relational system. A projection is a subset of
the columns in a table.

qualified
The name of a database object can be qualified, or preceded by, the name of the
database and the object owner.

query
1. A request for the retrieval of data with a select statement.

2. Any SQL statement that manipulates data.

query plan
The ordered set of steps required to carry out a query, complete with the access
methods chosen for each table.

query tree
An internal tree structure to represent the user’s query. A large portion of query
processing and compilation is built around the shape and structure of this internal
data structure. For stored procedures, views, triggers, rules and defaults these tree
structures are stored in the sysprocedures table on disk, and read back from disk
when the procedure or view is executed.

range query
A query that requests data within a specific range of values. These include greater
than/less than queries, queries using between, and some queries using like.

recovery
The process of rebuilding one or more databases from database dumps and log
dumps. See also automatic recovery.

referential integrity
The rules governing data consistency, specifically the relationships among the
primary keys and foreign keys of different tables. SQL Server addresses referential
integrity with user-defined triggers.

Glossary-22

Sybase SQL Server Release 11.0.x

referential integrity constraint
Referential integrity constraints require that data inserted into a “referencing”
table which defines the constraint must have matching values in a “referenced”
table. You cannot delete rows or update column values from a referenced table that
match values in a referencing table. Also, you cannot drop the referenced table
until the referencing table is dropped or the referential integrity constraint is
removed.

reformatting strategy
A strategy used by SQL Server to resolve join queries on large tables that have no
useful index. SQL Server builds a temporary clustered index on the join columns
of the inner table, and uses this index to retrieve the rows. SQL Server estimates the
cost of this strategy and the cost of the alternative—a table scan—and chooses the
cheapest method.

relational expression
A type of Boolean or logical expression of the form:

arith_expression
relational_operator arith_expression

In Transact-SQL, a relational expression can return TRUE, FALSE, or UNKNOWN.
The results can evaluate to UNKNOWN if one or both of the expressions evaluates
to NULL.

relational operator
An operator that compares two operands and yields a truth value, such as “5 <7”
(TRUE), “ABC” = “ABCD” (FALSE) or “@value > NULL” (UNKNOWN).

remote procedure calls
A stored procedure executed on a different SQL Server from the server the user is
logged into.

response time
The time it takes for a single task, such as a Transact-SQL query sent to SQL Server,
to complete. Contrast to initial response time, the time required to return the first
row of a query to a user.

restriction
A subset of the rows in a table. Also called a selection, it is one of the basic query
operations in a relational system.

SQL Server Performance and Tuning Guide Glossary-23

Sybase SQL Server Release 11.0.x

return status
A value that indicates that the procedure completed successfully or indicates the
reason for failure.

RID
See row ID.

roles
Provide individual accountability for users performing system administration and
security-related tasks in SQL Server. The System Administrator, System Security
Officer, and Operator roles can be granted to individual server login accounts.

rollback transaction
A Transact-SQL statement used with a user-defined transaction (before a commit
transaction has been received) that cancels the transaction and undoes any changes
that were made to the database.

row
A set of related columns that describes a specific entity. Also called record.

row aggregate function
Functions (sum, avg, min, max, and count) that generate a new row for summary data
when used with compute in a select statement.

row ID
A unique, internal identifier for a data row. The row ID, or RID, is a combination of
the data page number and the row number on the page.

rule
A specification that controls what data may be entered in a particular column, or in
a column of a particular user-defined datatype.

run values
Values of the configuration variables currently in use.

sa
The login name for the Sybase System Administrator.

Glossary-24

Sybase SQL Server Release 11.0.x

scalar aggregate
An aggregate function that produces a single value from a select statement that
does not include a group by clause. This is true whether the aggregate function is
operating on all the rows in a table or on a subset of rows defined by a where clause.
(See also vector aggregate.)

scale
The maximum number of digits that can be stored to the right of the decimal point
by a numeric or decimal datatype. The scale must be less than or equal to the
precision.

search argument
A predicate in a query’s where clause that can be used to locate rows via an index.

segment
A named subset of database devices available to a particular database. It is a label
that points to one or more database devices. Segments can be used to control the
placement of tables and indexes on specific database devices.

select list
The columns specified in the main clause of a select statement. In a dependent view,
the target list must be maintained in all underlying views if the dependent view is
to remain valid.

selection
A subset of the rows in a table. Also called a restriction, it is one of the basic query
operations in a relational system.

selectivity
See index selectivity, join selectivity.

self-join
A join used for comparing values within a column of a table. Since this operation
involves a join of a table with itself, you must give the table two temporary names,
or correlation names, which are then used to qualify the column names in the rest
of the query.

server cursor
A cursor declared inside a stored procedure. The client executing the stored
procedure is not aware of the presence of these cursors. Results returned to the
client for a fetch appear exactly the same as the results from a normal select.

SQL Server Performance and Tuning Guide Glossary-25

Sybase SQL Server Release 11.0.x

server engine
See engine.

server user ID
The ID number by which a user is known to SQL Server.

severity level number
The severity of an error condition.

shared lock
A lock created by nonupdate (“read”) operations. Other users may read the data
concurrently, but no transaction can acquire an exclusive lock on the data until all
the shared locks have been released.

sort order
Used by SQL Server to determine the order in which to sort character data. Also
called collating sequence.

spinlock
 A special type of lock or semaphore that protects critical code fragments that must
be executed in a single-threaded fashion. Spinlocks exist for extremely short
durations and protect internal server data structures such as a data cache.

SQL Server
The server in Sybase’s client-server architecture. SQL Server manages multiple
databases and multiple users, keeps track of the actual location of data on disks,
maintains mapping of logical data description to physical data storage, and
maintains data and procedure caches in memory.

statement
Begins with a keyword that names the basic operation or command to be
performed.

statement block
A series of Transact-SQL statements enclosed between the keywords begin and end
so that they are treated as a unit.

stored procedure
A collection of SQL statements and optional control-of-flow statements stored
under a name. SQL Server-supplied stored procedures are called system
procedures.

Glossary-26

Sybase SQL Server Release 11.0.x

subquery
A select statement that is nested inside another select, insert, update or delete statement,
or inside another subquery.

System Administrator
A user authorized to handle SQL Server system administration, including creating
user accounts, assigning permissions, and creating new databases.

system databases
The databases on a newly installed SQL Server: master, which controls user
databases and the operation of the SQL Server; tempdb, used for temporary tables;
model, used as a template to create new user databases; and sybsystemprocs, which
stores the system procedures.

system function
A function that returns special information from the database, particularly from
the system tables.

system procedures
Stored procedures that SQL Server supplies for use in system administration. These
procedures are provided as shortcuts for retrieving information from the system
tables, or mechanisms for accomplishing database administration and other tasks
that involve updating system tables.

system table
One of the data dictionary tables. The system tables keep track of information
about the SQL Server as a whole and about each user database. The master database
contains some system tables that are not in user databases.

table
A collection of rows (records) that have associated columns (fields). The logical
equivalent of a database file.

table scan
A method of accessing a table by reading every row in the table. Table scans are
used when there are no conditions (where clauses) on a query, when no index exists
on the clauses named in the query, or when the SQL Server optimizer determines
that an index should not be used because it is more expensive than a table scan.

SQL Server Performance and Tuning Guide Glossary-27

Sybase SQL Server Release 11.0.x

table-level constraint
Limits values on more than one column of a table. Enter table-level constraints as
separate comma-delimited clauses in the create statement. You must declare
constraints that operate on more than one column as table-level constraints.

task
An execution environment within the SQL Server scheduled onto engines by the
SQL Server.

temporary database
The temporary database in SQL Server, tempdb, that provides a storage area for
temporary tables and other temporary working storage needs (for example,
intermediate results of group by and order by).

text chain
A special data structure used to store text and image values for a table. Data rows
store pointers to the location of the text or image value in the text chain.

theta join
Joins which use the comparison operators as the join condition. Comparison
operators include equal (=), not equal (!=), greater than (>), less than (<), greater
than or equal to (>=), and less than or equal to (<=).

threshold
The estimate of the number of log pages required to back up the transaction log,
and the action to be taken when the amount of space falls below that value.

throughput
The volume of work completed in a given time period. It is usually measured in
transactions per second (TPS).

transaction
A mechanism for ensuring that a set of actions is treated as a single unit of work.
See also user-defined transaction.

transaction log
A system table (syslogs) in which all changes to the database are recorded.

trigger
A special form of stored procedure that goes into effect when a user gives a change
command such as insert, delete, or update to a specified table or column. Triggers are
often used to enforce referential integrity.

Glossary-28

Sybase SQL Server Release 11.0.x

trigger test tables
When a data modification affects a key column, triggers compare the new column
values to related keys by using temporary work tables called trigger test tables.

ungrouped aggregate
See scalar aggregate.

unique constraint
A constraint requiring that all non-null values in the specified columns must be
unique. No two rows in the table are allowed to have the same value in the
specified column. The unique constraint creates a unique index on the specified
columns to enforce this data integrity.

unique indexes
Indexes which do not permit any two rows in the specified columns to have the
same value. SQL Server checks for duplicate values when you create the index (if
data already exists) and each time data is added.

update
An addition, deletion, or change to data, involving the insert, delete, truncate table, or
update statements.

update in place
See in-place update.

update locks
Locks which ensure that only one operation can change data on a page. Other
transactions are allowed to read the data through shared locks. SQL Server applies
update locks when an update or delete operation begins.

variable
An entity that is assigned a value. SQL Server has two kinds of variables, called
local variables and global variables.

vector aggregate
A value that results from using an aggregate function with a group by clause. See
also scalar aggregate.

view
An alternative way of looking at the data in one or more tables. Usually created as
a subset of columns from one or more tables.

SQL Server Performance and Tuning Guide Glossary-29

Sybase SQL Server Release 11.0.x

view resolution
In queries that involve a view, the process of verifying the validity of database
objects in the query, and combining the query and the stored definition of the view.

wash area
An area of a buffer pool near the LRU end of the MRU/LRU page chain. Once
pages enter the wash area, SQL Server initiates an asynchronous write on the
pages. The purpose of the wash area is to provide clean buffers at the LRU for any
query that needs to perform a disk I/O.

wildcard
Special character used with the Transact-SQL like keyword that can stand for one
(the underscore, _) or any number of (the percent sign, %) characters in pattern-
matching.

write-ahead log
A log, such as the transaction log, that SQL Server automatically writes to when a
user issues a statement that would modify the database. After all changes for the
statement have been recorded in the log, they are written to an in-cache copy of the
data page.

Glossary-30

Sybase SQL Server Release 11.0.x

SQL Server Performance and Tuning Guide Index-1

Index

The index is divided into three sections:

• Symbols

Indexes each of the symbols used in Sybase SQL Server
documentation.

• Numerics

Indexes entries that begin numerically.

• Subjects

Indexes subjects alphabetically.

Page numbers in bold are primary references.

Symbols
, (comma)

in SQL statements xxxviii
{} (curly braces) in SQL

statements xxxviii
... (ellipsis) in SQL statements xl
> (greater than) comparison operator

optimizing 10-1
() (parentheses)

in SQL statements xxxviii
(pound sign), temporary table

identifier prefix 14-2
[] (square brackets)

in SQL statements xxxviii

Numerics
16K memory pool, estimating I/O

for 5-7
302 trace flag 9-14 to 9-26
8K memory pool, uses of 15-16

A
Access

concurrent, isolation levels and 11-16
index 3-2
memory and disk speeds 15-1
optimizer methods 3-2

Add index level, sp_sysmon report 19-39
Address locks

contention 19-18
deadlocks reported by

sp_sysmon 19-44
sp_sysmon report on 19-43

Affinity, CPU 17-8
Aggregate functions

denormalization and
performance 2-11

denormalization and temporary
tables 14-5

optimization of 7-25, 10-5
showplan messages for 8-15
subqueries including 7-29
subquery internal in showplan

messages 8-47
Aging

data cache 15-8
procedure cache 15-4

all keyword
union, optimization of 10-5

Index-2

Sybase SQL Server Release 11.0.x

Allocation map. See Object Allocation
Map (OAM)

Allocation pages
large I/O and 19-60

Allocation units 3-4, 3-8
database creation and 18-1
dbcc report on 5-7

and keyword
subqueries containing 7-30

any keyword
subquery optimization and 7-27

Application design 19-4
cursors and 12-16
deadlock avoidance 11-27
deadlock detection in 11-26
delaying deadlock checking 11-27
denormalization for 2-9
DSS and OLTP 15-13
index specification 9-8
isolation level 0 considerations 11-17
levels of locking 11-33
managing denormalized data

with 2-16, 2-17
network packet size and 16-5
network traffic reduction with 16-8
primary keys and 6-27
procedure cache sizing 15-6
SMP servers 17-11
temporary tables in 14-4
user connections and 19-15
user interaction in transactions 11-33

Architecture, Server SMP 17-5
Arguments, search. See Search

arguments
Artificial columns 6-44
Ascending scan showplan message 8-28
Ascending sort 6-22
@@pack_received global variable 16-6
@@pack_sent global variable 16-6
@@packet_errors global variable 16-6
Auditing

disk contention and 13-2
performance effects 15-36
queue, size of 15-37

Average disk I/Os returned (sp_sysmon
report 19-14

Average lock contention, sp_sysmon
report on 19-42

B
Backup Server 18-5
Backups 18-5 to 18-6

network activity from 16-9
planning 1-4

Base cost (optimization) 9-19
Batch processing

bulk copy and 18-7
I/O pacing and 19-17
managing denormalized data

with 2-18
preformance monitoring and 19-4
temporary tables and 14-12
transactions and lock

contention 11-33
bcp (bulk copy utility) 18-6

heap tables and 3-12
large I/O for 15-13
reclaiming space with 3-20
temporary tables 14-3

binary datatype
null becomes varbinary 10-6

Binary expressions xl
Binding

caches 15-12, 15-29
objects to data caches 3-15
tempdb 14-9, 15-13
testing prefetch size and 9-10
transaction logs 15-13

Blocking network checks, sp_sysmon
report on 19-12

Blocking process
avoiding during mass

operations 11-34
partitioning to avoid 13-13
sp_lock report on 11-25
sp_who report on 11-25

Brackets. See Square brackets []

SQL Server Performance and Tuning Guide Index-3

Sybase SQL Server Release 11.0.x

B-trees, index 4-4
nonclustered indexes 4-13

Buffers
allocation and caching 3-18
chain of 3-15
extent I/O 18-3
grabbed statistics 19-51
“proc buffers” 15-5
statistics 19-51
unavailable 9-11
wash behavior 19-58

Bulk copying. See bcp (bulk copy utility)
Business models and logical database

design 2-1

C
Cache hit ratio

data cache 15-10
procedure cache 15-6
sp_sysmon report on 19-51, 19-55

Cache, procedure 15-4
cache hit ratio 15-6
errors 15-7
query plans in 15-4
size report 15-5
sizing 15-6
sp_sysmon report on 19-61
task switching and 19-17

Cached (LRU) buffers 19-52, 19-59
Caches, data 15-7

aging in 3-15
binding objects to 3-15
cache hit ratio 15-10
data modification and 3-17, 15-9
deletes on heaps and 3-18
fillfactor and 15-34
guidelines for named 15-18
hits found in wash 19-55
hot spots bound to 15-12
I/O configuration 3-14, 15-15 to 15-16
I/O statistics for 6-12
inserts to heaps and 3-18
joins and 3-16

large I/O and 15-13
misses 19-56
MRU replacement strategy 3-16
named 15-12
page aging in 15-8
pools in 3-14, 15-15 to 15-16
spinlocks on 15-12
strategies chosen by optimizer 15-16,

19-59
subquery results 7-31
table scans and 6-14
task switching and 19-17
tempdb bound to own 14-9, 15-13
total searches 19-56
transaction log bound to own 15-13
updates to heaps and 3-18
utilization 19-54
wash marker 3-15
writes and statistics 6-13

Case sensitivity
in SQL xxxix

Chain of buffers (data cache) 3-15
Chains of pages

calculating size of text and image 5-27
data and index 3-5
index pages 4-4
overflow pages and 4-10
partitions 13-13
placement 13-1
unpartitioning 13-20

Changing
configuration parameters 19-3

char datatype
null becomes varchar 10-6

Character expressions xl
Cheap direct updates 7-34
checkalloc option, dbcc

object size report 5-5
Checkpoint process 15-8, 19-64

average time 19-65
housekeeper task and 17-10
I/O statistics and 6-13
sp_sysmon and 19-63
total 19-65

Index-4

Sybase SQL Server Release 11.0.x

Client
packet size specification 16-5

Client/server architecture 16-3
close command

memory and 12-5
close on endtran option, set 12-16
Clustered indexes 4-2

computing number of pages 5-14,
5-15

computing size of rows 5-14
dbcc and size of 5-6
delete operations 4-10
estimating size of 5-12 to 5-23
fillfactor effect on 5-24
guidelines for choosing 6-25
insert operations and 4-7
not allowed on partitioned

tables 13-16
order of key values 4-4
overflow pages and 4-10
overhead 3-19
page reads 4-6
performance and 3-19
prefetch and 9-10
reclaiming space with 3-20
segments and 13-10
select operations and 4-5
showplan messages about 8-26
structure 4-4

Clustered table sp_sysmon report 19-25
Collapsing tables 2-12
Columns

artificial 6-44
average length in object size

calculations 5-25
datatype sizes and 5-13
derived 2-11
fixed- and variable-length 5-13
image 5-26 to 5-27
redundant in database design 2-11
splitting tables 2-15
text 5-26 to 5-27
unindexed 3-2
values in, and normalization 2-5

Comma (,)
in SQL statements xxxviii

Committed transactions, sp_sysmon
report on 19-23

Composite indexes 6-28
advantages of 6-31

compute clause
showplan messages for 8-16

Concurrency
locking and 11-5, 11-26
SMP environment 17-11

Configuration (Server)
housekeeper task 17-10
I/O 15-13
memory 15-2
named data caches 15-12
network packet size 16-3
number of rows per page 11-32
performance monitoring and 19-4

Configuration parameters
sp_sysmon and 19-3

Connections
cursors and 12-16
opened (sp_sysmon report on) 19-15
packet size 16-3
sharing 16-9

Consistency
checking database 5-7
data 2-18, 11-1

Constants xl
Constraints

primary key 6-6
unique 6-6

Contention 19-4
address locks 19-18
avoiding with clustered indexes 4-1
data cache 15-19
device semaphore 19-72
disk devices 19-20
disk I/O 19-67
disk structures 19-20
disk writes 19-17
I/O 15-35
I/O device 19-20

SQL Server Performance and Tuning Guide Index-5

Sybase SQL Server Release 11.0.x

inserts 13-12
last page of heap tables 3-14, 19-43
lock statistics 19-42
locking and 19-18
log semaphore 19-18
log semaphore requests 19-31
logical devices and 13-1
max_rows_per_page and 11-31
page 13-14
partitions to avoid 13-12
reducing 11-29
SMP servers and 17-11
spinlock 15-19, 19-54
system tables in tempdb 14-10
transaction log writes 3-21
underlying problems 13-2
yields and 19-16

Context switches 19-16
Control pages for partitioned

tables 13-16
syspartitions and 13-19

Controller, device 13-4
Conventions

See also Syntax
Transact-SQL syntax xxxviii to xl

Conversion
datatypes 10-7
in lists to or clauses 7-22
parameter datatypes 10-8
subqueries to equijoins 7-28
ticks to milliseconds, formula for 7-7

Correlated subqueries
showplan messages for 8-43

count aggregate function
optimization of 7-25

count(*) aggregate function
exists compared to 10-4
optimization of 7-25

Counters, internal 19-2
Covered queries

index covering 3-2
specifying cache strategy for 9-12
unique indexes and 9-20

CPU

affinity 17-8
checkpoint process and usage

Checkpoint process
CPU usage 19-11

processes and 19-8
Server use while idle 19-9
sp_sysmon report and 19-6
ticks 7-7
time 7-7
yeilding and overhead 19-12
yields by engine 19-11

CPU usage
deadlocks and 11-26
housekeeper task and 17-9
lowering 19-10
monitoring 17-4

create database command
parallel I/O 13-2

create index command
fillfactor option 17-12
locks created by 11-21, 18-2
max_rows_per_page option 17-12

Critical data, duplicating 2-13
Curly braces ({}) in SQL

statements xxxviii
Current locks, sp_lock system

procedure 11-25
cursor rows option, set 12-16
Cursors

close on endtran option 11-19
execute 12-5
guidelines for 12-13
indexes and 12-6
isolation levels and 11-19
locking and 11-18 to 11-20, 12-3
modes 12-6
multiple 12-16
or strategy optimization and 7-24
partitions and 13-17
read-only 12-6
shared keyword in 11-19
updatable 12-6
within stored procedures 12-5

Index-6

Sybase SQL Server Release 11.0.x

D
Data

consistency 2-18, 11-1
little-used 2-15
max_rows_per_page and storage 11-31
row size calculation 5-25
storage 3-1 to 3-21, 13-4
uniqueness 4-1

Data caches 15-7
aging in 3-15
binding objects to 3-15
cache hit ratio 15-10
data modification and 3-17, 15-9
deletes on heaps and 3-18
fetch-and-discard strategy 3-16
fillfactor and 15-34
flushing for table scans 6-14
guidelines for named 15-18
hot spots bound to 15-12
inserts to heaps and 3-18
joins and 3-16
large I/O and 15-13
named 15-12
page aging in 15-8
sizing 15-19 to 15-28
sp_sysmon report on

management 19-46
spinlocks on 15-12
strategies chosen by optimizer 15-16
subquery cache 7-31
tempdb bound to own 14-9, 15-13
transaction log bound to own 15-13
updates to heaps and 3-18
wash marker 3-15

Data integrity
application logic for 2-17
denormalization effect on 2-9
isolation levels and 11-17
managing 2-16

Data modification
data caches and 3-17, 15-9
heap tables and 3-11
log space and 18-5
nonclustered indexes and 6-28

number of indexes and 6-4
recovery interval and 15-34
showplan messages showing 8-7
transaction log and 3-20

Data pages 3-3 to 3-20
clustered indexes and 4-4
computing number of 5-14
fillfactor effect on 5-24
full, and insert operations 4-7
limiting number of rows on 11-31
linking 3-5
partially full 3-19
prefetching 9-11
text and image 3-6

Database design 2-1 to 2-18
collapsing tables 2-12
column redundancy 2-11
indexing based on 6-40
logical keys and index keys 6-25
normalization 2-3
ULC flushes and 19-29

Database devices 13-3
sybsecurity 13-6
for tempdb 13-5

Database objects
binding to caches 3-15
placement on segments 13-1

Databases
See also Database design
creating 18-1
loading 18-1
placement 13-1

Datatypes
average sizes for 5-25
choosing 6-27, 6-44
joins and 10-6
mismatched 9-15
numeric compared to character 6-44

dbcc (Database Consistency Checker)
disadvantages of 5-8
isolation levels and 11-17
large I/O for 15-13
trace flags 9-14
tune ascinserts 19-38

SQL Server Performance and Tuning Guide Index-7

Sybase SQL Server Release 11.0.x

tune cpu affinity 17-8
tune deviochar 19-66
tune doneinproc 19-76
tune maxwritedes 19-17

Deadlocks 11-26 to 11-27
avoiding 11-27
delaying checking 11-27
detection 11-26, 19-45
index maintenance and 19-39
percentage 19-42
performance and 11-29
searches 19-45
sp_sysmon report on 19-42
statistics 19-44

deallocate cursor command
memory and 12-5

Debugging aids
dbcc traceon (302) 9-14
set forceplan on 9-2

Decision support system (DSS)
applications

named data caches for 15-13
tuning levels 1-3

declare cursor command
memory and 12-5

Default settings
audit queue size 15-37
auditing 15-36
index fillfactor 6-7
index statistics 7-18
max_rows_per_page 11-32
network packet size 16-3
number of tables optimized 9-7
optimizer 9-23

Deferred delete statistics 19-27
Deferred index updates 7-38

showplan messages for 8-12
Deferred updates 7-37

scan counts and 6-11
showplan messages for 8-11
statistics 19-26

delete command
locks created by 11-21
transaction isolation levels and 11-4

Delete operations
clustered indexes 4-10
heap tables 3-13
index maintenance and 19-35
nonclustered indexes 4-20
object size and 5-1
statistics 19-27

Demand locks 11-9
sp_lock report on 11-25

Denormalization 2-8
application design and 2-17
batch reconciliation and 2-18
derived columns 2-11
disadvantages of 2-9
duplicating tables and 2-13
management after 2-16
performance benefits of 2-9
processing costs and 2-9
redundant columns 2-11
techniques for 2-10
temporary tables and 14-5

Density
index, and joins 7-17
table row 3-4

Density table 6-37
joins and 9-25
optimizer and 6-39

Derived columns 2-11
Descending order (desc keyword) 6-22

covered queries and 6-23
Devices

activity detail 19-70
adding 19-4
object placement on 13-1
semaphores 19-71
using separate 17-12

Direct updates 7-33
cheap 7-34
expensive 7-35
in place 7-33
statistics 19-26

Dirty pages
checkpoint process and 15-8
wash area and 15-8

Index-8

Sybase SQL Server Release 11.0.x

Dirty reads 11-2
allowing 11-16
locking and 11-13
modify conflicts and 19-20
preventing 11-3
requests 19-61
restarts 19-53
sp_sysmon report on 19-53
transaction isolation levels and 11-3

Discarded (MRU) buffers sp_sysmon
report on 19-52, 19-59

Disk devices
adding 19-4
average I/Os 19-14
contention 19-20
I/O management reported by

sp_sysmon 19-66
I/O report (sp_sysmon) 19-13
I/O structures 19-69
transaction log and

performance 19-19
write operations 19-17

disk i/o structures configuration
parameter 19-69

Disk mirroring
device placement 13-7
performance and 13-2

distinct keyword
showplan messages for 8-20, 8-48
worktables for 6-12

Distribution pages 6-35
matching values on 9-21
nonexistent 9-24
optimizer and 9-21
space calculations and 5-24
sysindexes storage 6-43

Distribution table 6-35
missing 9-24
optimizer and 6-39

Dropping
indexes specified with index 9-9
partitioned tables 13-16

Duplication
removing rows from worktables 7-23

tables 2-13
update performance effect of 7-37

Dynamic indexes 7-23
showplan message for 8-31

E
Echoing input into files 8-2
Ellipsis (...) in SQL statements xl
End transaction, ULC flushes and 19-29
Engines

busy 19-9
“config limit” 19-69
connections and 19-15
CPU report and 19-10
monitoring performance 19-4
outstanding I/O 19-69
utilization 19-9

Equijoins
subqueries converted to 7-28

Equivalents in search arguments 7-10
Error logs

procedure cache size in 15-5
Errors

packet 16-6
procedure cache 15-4, 15-7

Exclusive locks
intent deadlocks 19-44
page 11-7
page deadlocks 19-44
sp_lock report on 11-25
table 11-8
table deadlocks 19-44

Execute cursors
memory use of 12-5

Execution time 7-7
Execution, preventing with set noexec

on 8-1
Existence joins

showplan messages for 8-49
subqueries flattened to 7-27

exists keyword
compared to count 10-4
optimizing searches 10-1

SQL Server Performance and Tuning Guide Index-9

Sybase SQL Server Release 11.0.x

subquery optimization and 7-27
Expensive direct updates 7-35, 7-36
Expression subqueries

non-correlated, optimization of 7-28
optimization of 7-28
showplan messages for 8-47

Expressions
types of xl
in where clauses 9-23

Extents
dbcc reports on 5-6
sort operations and 18-3
space allocation and 3-4

F
FALSE, return value of 7-27
Fetch-and-discard cache strategy 3-16
Fetching cursors

locking and 11-20
memory and 12-5

Fillfactor
advantages of 6-46
data cache performance and 15-34
disadvantages of 6-45
index creation and 6-27, 6-44
index page size and 5-24
locking and 11-30
max_rows_per_page compared to 11-31
page splits and 6-46
SMP environment 17-12

First normal form 2-4
See also Normalization

First page
allocation page 3-8
partition, displaying with

sp_helpartition 13-20
partitions 13-19
text pointer 3-6

Fixed-length columns
null values in 10-6

Flattened subqueries 7-27
showplan messages for 8-38

Floating point data xl

for update option, declare cursor
optimizing and 12-15

forceplan option, set 9-2
alternatives 9-6
risks of 9-6

Foreign keys
denormalization and 2-9

Formulas
cache hit ratio 15-11
factors affecting 5-23 to 5-27
index distribution steps 6-36
optimizer 6-39
table or index sizes 5-10 to 5-27
tempdb size 14-5

“Found in wash” sp_sysmon report 19-55
Fragmentation, data 15-32

large I/O and 19-53
Free checkpoints 19-65
Free writes 17-9
from keyword

order of tables in clause 7-19
Full ULC, log flushes and 19-29

G
Global allocation map pages 3-7
goto keyword

optimizing queries and 10-2
Grabbed dirty sp_sysmon report 19-57
group by clause

showplan messages for 8-13, 8-15
Group commit sleeps, sp_sysmon report

on 19-19

H
Hardware 1-6

network 16-8
ports 16-13
terminology 13-3

Header information
data pages 3-3
index pages 4-4
packet 16-3

Index-10

Sybase SQL Server Release 11.0.x

“proc headers” 15-6
Heading, sp_sysmon report 19-8
Heap tables 3-10 to 3-21

bcp (bulk copy utility) and 18-8
delete operations 3-13
deletes and pages in cache 3-18
guidelines for using 3-19
I/O and 3-14
I/O inefficiency and 3-19
insert operations on 3-11
inserts 19-25
inserts and pages in cache 3-18
lock contention 19-43
locking 3-12
maintaining 3-19
performance limits 3-12
select operations on 3-11, 3-17
updates and pages in cache 3-18
updates on 3-13

Help
Technical Support xli

Historical data 2-15
holdlock keyword

locking 11-15
shared keyword and 11-20

Horizontal table splitting 2-14
“Hot spots” 11-30

binding caches to 15-12
housekeeper free write percent configuration

parameter 17-10, 19-65
Housekeeper task 17-9 to 17-11

checkpoints and 19-64
recovery time and 15-35
sp_sysmon and 19-63

I
I/O

See also Large I/O
access problems and 13-2
balancing load with segments 13-11
bcp (bulk copy utility) and 18-8
checking 19-13
completed 19-69

CPU and 17-4, 19-10
create database and 18-2
dbcc commands and 5-5
default caches and 3-15
delays 19-68
device contention and 19-20
devices and 13-1
direct updates and 7-33
efficiency on heap tables 3-19
estimating 6-14
heap tables and 3-14
increasing size of 3-14
limits 19-68
maximum outstanding 19-68
memory and 15-1
memory pools and 15-12
named caches and 15-12
optimizer estimates of 9-16
pacing 19-17
parallel for create database 13-2
partitions and 13-14
performance and 13-4
physical compared to logical 9-25
prefetch keyword 9-10
range queries and 9-9
recovery interval and 18-6
requested 19-69
saving with reformatting 7-17
select operations on heap tables

and 3-17
serverwide and database 13-5
showplan messages for 8-35
SMP distribution 17-7
sp_spaceused and 5-4
specifying size in queries 9-9
spreading between caches 14-9
statistics information 6-8
structures 19-69
total 19-71
transaction log and 3-21
update operations and 7-35

i/o polling process count configuration
parameter

network checks and 19-13

SQL Server Performance and Tuning Guide Index-11

Sybase SQL Server Release 11.0.x

IDENTITY columns
cursors and 12-7
indexing and performance 6-25

Idle CPU, sp_sysmon report on 19-11
if...else conditions

optimizing 10-1
image datatype

large I/O for 15-13
page number estimation 5-26 to 5-27
page size for storage 3-7
partitioning and 13-16
storage on separate device 3-6, 13-11

in keyword
optimization of 7-22
subquery optimization and 7-27

Index covering
definition 3-2
showplan messages for 8-29
sort operations and 6-23

Index keys, logical keys and 6-25
Index pages

fillfactor effect on 5-24, 6-46
limiting number of rows on 11-31
page splits for 4-9
storage on 4-2

indexalloc option, dbcc
index size report 5-5

Indexes 4-1 to 4-26
access through 3-2, 4-1
add levels statistics 19-39
avoiding sorts with 6-21
B-trees 4-4
bulk copy and 18-6
choosing 3-2
computing number of pages 5-15
costing 9-20
creating 18-2
cursors using 12-6
denormalization and 2-9
design considerations 6-1
dropping infrequently used 6-40
dynamic 7-23
fillfactor and 6-44
forced 9-18

guidelines for 6-26
information about 6-42
intermediate level 4-3
leaf level 4-3
leaf pages 4-14
locking using 11-7
maintenance statistics 19-33
management 19-32
max_rows_per_page and 11-32
multiple 17-11
number allowed 6-5
page chains 4-4
performance and 4-1 to 7-40
performance management tools 6-7
rebuilding 6-41
recovery and creation 18-4
root level 4-3
selectivity 6-3
size estimation of 5-1 to 5-27
size of entries and performance 6-4
SMP environment and multiple 17-11
sort order changes 6-41
sp_spaceused size report 5-4
specifying for queries 9-7
temporary tables and 14-3, 14-13
types of 4-2
update modes and 7-41
usefulness of 3-11

Information (Server)
CPU usage 17-4
I/O statistics 6-8
indexes 6-42
storage 3-3

Initializing
text or image pages 5-26

Inner tables of joins 7-15
In-place updates 7-33
insert command

contention and 11-30
locks created by 11-21
transaction isolation levels and 11-4

Insert operations
clustered indexes 4-7
clustered table statistics 19-25

Index-12

Sybase SQL Server Release 11.0.x

contention 13-12
heap table statistics 19-25
heap tables and 3-11
index maintenance and 19-34
logging and 14-10
nonclustered indexes 4-19
page split exceptions and 4-9
partitions and 13-12, 13-18
performance of 13-2
rebuilding indexes after many 6-41
statistics 19-25
total row statistics 19-26

Integer data
in SQL xl
optimizing queries on 9-15, 10-1

Intent table locks 11-8
deadlocks and 11-27
sp_lock report on 11-25

Intermediate levels of indexes 4-3
Isolation levels

cursors 11-19
default 11-13, 11-14
dirty reads 11-3
holdlock keyword 11-15
nonrepeatable reads 11-3
phantoms 11-4
transactions 11-2

J
Joins

choosing indexes for 6-25
data cache and 3-16
datatype compatibility in 6-27, 10-7
denormalization and 2-8
density table 9-25
derived columns instead of 2-11
distribution pages and 9-25
evaluating 9-17
existence 7-27
index density 7-17
indexing by optimizer 7-14
many tables in 7-19, 7-20
normalization and 2-4

number of tables considered by
optimizer, increasing 9-7

optimizing 7-13, 9-15
or clause optimization 10-4
process of 7-14
scan counts for 6-10
search arguments and 7-12
selectivity and optimizer 9-24
table order in 7-19, 7-20, 9-2
temporary tables for 14-4
union operator optimization 10-4
updates using 7-33, 7-37

K
Kernel

engine busy utilization 19-9
utilization 19-8

Key values
distribution table for 6-35
index statistics and 9-21
index storage 4-1
order for clustered indexes 4-4
overflow pages and 4-10

Keys, index
choosing columns for 6-25
clustered and nonclustered indexes

and 4-2
composite 6-28
density and 7-17
density table of 6-37
distribution table 6-35
logical keys and 6-25
monotonically increasing 4-9
showplan messages for 8-29
size 6-5
size and performance 6-27
unique 6-27
update operations on 7-33

L
Large I/O

denied 19-52, 19-60

SQL Server Performance and Tuning Guide Index-13

Sybase SQL Server Release 11.0.x

effectiveness 19-52
fragmentation and 19-53
named data caches and 15-13
pages cached 19-53, 19-61
pages used 19-53, 19-61
performed 19-52, 19-60
pool detail 19-61
restrictions 19-60
total requests 19-52, 19-61
usage 19-52, 19-60

Last log page writes in sp_sysmon
report 19-20

Last page locks on heaps in sp_sysmon
report 19-43

Leaf levels of indexes 4-3
fillfactor and number of rows 5-24
large I/O and 15-13
queries on 3-2
row size calculation 5-19

Leaf pages 4-14
calculating number in index 5-19
limiting number of rows on 11-31

Levels
indexes 4-3
locking 11-33
tuning 1-2 to 1-6

Listeners, network 16-13
Local backups 18-5
Local variables

optimizer and 9-23
lock promotion HWM configuration

parameter 11-10
lock promotion LWM configuration

parameter 11-11
lock promotion PCT configuration

parameter 11-11
Lock promotion thresholds 11-9 to 11-13

database 11-12
default 11-12
precedence 11-12
server-wide 11-11
sp_sysmon reports and 19-46
table 11-12

Locking 11-1 to 11-34

concurrency 11-5
contention and 19-18
control over 11-2, 11-6
create index and 18-2
cursors and 11-18
dbcc commands and 5-5
deadlocks 11-26 to 11-27
entire table 11-6
example of 11-22 to 11-24
for update clause 11-18
forcing a write 11-9
heap tables and inserts 3-12
holdlock keyword 11-14
indexes used 11-7
last page inserts and 6-25
management with sp_sysmon 19-40
noholdlock keyword 11-16
or strategy optimization and 7-24
overhead 11-5
page and table, controlling 11-9
performance 11-28
reducing contention 11-29
row density and 3-4
sp_sysmon report on 19-42
tempdb and 14-10
temporary tables 11-6
transactions and 11-2
worktables and 14-10

Locks
address 19-18
configuring number of 11-10
deadlock percentage 19-42
demand 11-9
exclusive page 11-7
exclusive table 11-8
granularity 11-5
intent table 11-8
limits 11-21
page 11-7
releasing 11-16
shared page 11-7
shared table 11-8
size of 11-5
sleeping 11-25

Index-14

Sybase SQL Server Release 11.0.x

sp_sysmon report on 19-42
summary of 11-21
table 11-8
total requests 19-42
types of 11-6, 11-25
update page 11-7
viewing 11-25

Log I/O size
group commit sleeps and 19-19
tuning 19-20

Log scan showplan message 8-35
Log semaphore requests 19-31
Logging

bulk copy and 18-6
minimizing in tempdb 14-10

Logical database design 2-1
Logical device name 13-3
Logical expressions xl
Logical keys, index keys and 6-25
Logical reads (statistics io) 6-12
Login process 16-9
Loops

runnable process search count and 19-10,
19-11

showplan messages for nested
iterations 8-9

Lower bound of range query 9-23
LRU replacement strategy 3-15

buffer grab in sp_sysmon report 19-57
I/O and 6-15
I/O statistics and 6-13
showplan messages for 8-36
specifying 9-13

M
Magic numbers 9-23
Maintenance tasks 18-1 to 18-9

forced indexes 9-9
forceplan checking 9-3
indexes and 19-34
performance and 13-2

Managing denormalized data 2-16

Map, object allocation. See Object
Allocation Map (OAM)

Matching index scans 4-21
Materialized subqueries 7-28

showplan messages for 8-39
max aggregate function

min used with 7-26
optimization of 7-25, 10-5

max async i/os per engine configuration
parameter 19-69

max_rows_per_page option
fillfactor compared to 11-31
locking and 11-31
select into effects 11-32
sp_estspace and 11-31

Maximum outstanding I/Os 19-68
Maximum ULC size, sp_sysmon report

on 19-30
Memory

allocated 19-63
configuration parameters for 15-2
cursors and 12-3
I/O and 15-1
lock requirements 11-10
named data caches and 15-12
network packets and 16-4
performance and 15-1 to 15-37
released 19-63
sort operations and 18-3
sp_sysmon report on 19-63

Messages
See also Errors
dbcc traceon(302) 9-14 to 9-26
deadlock victim 11-26
dropped index 9-9
range queries 9-23
showplan 8-1 to 8-50

min aggregate function
max used with 7-26
optimization of 7-25, 10-5

Modes of disk mirroring 13-8
Modify conflicts in sp_sysmon

report 19-20
Monitoring

SQL Server Performance and Tuning Guide Index-15

Sybase SQL Server Release 11.0.x

CPU usage 17-4
data cache performance 15-10
index usage 6-40
indexes 6-7
network activity 16-6
performance 1-2, 19-2

MRU replacement strategy 3-15, 3-16
disabling 9-13
I/O and 6-14
showplan messages for 8-36
specifying 9-13

Multicolumn index. See Composite
indexes

Multidatabase transactions 19-24, 19-29
Multiple network listeners 16-13

N
Names

column, in search arguments 7-10
index clause and 9-8
index prefetch and 9-11
index, in showplan messages 8-27
prefetch and 9-11

Nested iterations 7-13
Nesting

showplan messages for 8-43
temporary tables and 14-14

Networks
blocking checks 19-12
cursor activity of 12-10
delayed I/O 19-75
hardware for 16-8
I/O management 19-72
i/o polling process count and 19-13
multiple listeners 16-13
packet size 19-21
packets received 19-20
packets sent 19-21
performance and 16-1 to 16-13
ports 16-13
reducing traffic on 16-7
SMP distribution 17-7
sp_sysmon report on 19-11

total I/O checks 19-12
tuning issues 1-5

noholdlock keyword, select 11-16
Non-blocking network checks, sp_sysmon

report on 19-12
Nonclustered indexes 4-2

covered queries and sorting 6-23
dbcc indexalloc report on 5-6
definition of 4-13
delete operations 4-20
estimating size of 5-19 to 5-21
guidelines for 6-26
insert operations 4-19
maintenance report 19-33
number allowed 6-5
offset table 4-14
and performance 4-13 to 7-40
row IDs 4-14
select operations 4-17
size of 4-14
sorting and 6-23
structure 4-16

Non-leaf rows 5-20
Nonmatching index scans 4-22 to 4-23

non-equality operators and 7-10
Nonrepeatable reads 11-3
Normalization 2-3

first normal form 2-4
joins and 2-4
second normal form 2-5
temporary tables and 14-5
third normal form 2-6

not exists keyword
optimizing searches 10-1

not in keyword
optimizing searches using 10-1

Null columns
optimizing updates on 7-41
storage of rows 3-3
storage size 5-12
text and image 5-26
variable-length 6-27

Null values
datatypes allowing 6-27, 10-6

Index-16

Sybase SQL Server Release 11.0.x

text and image columns 5-27
variable-length columns and 10-6

Number (quantity of)
buffers 18-3
bytes per index key 6-5
checkpoints 19-64
clustered indexes 4-2
cursor rows 12-16
indexes 17-11
indexes per table 6-5
locks on a table 11-10
nonclustered indexes 4-2
OAM pages 5-21
packet errors 16-6
packets 16-4
rows (rowtotal), estimated 5-3
rows on a page 11-31
rows, optimizer and 9-19
table rows 5-26
tables considered by optimizer 9-7

number of extent i/o buffers configuration
parameter 18-3

number of sort buffers configuration
parameter 18-4

Numbers
magic 9-23
row offset 4-13
showplan output 8-3

Numeric expressions xl

O
Object Allocation Map (OAM)

pages 3-8
dbcc commands using 5-5
LRU strategy in data cache 3-15
object size information in 5-2
overhead calculation and 5-15
pointers in sysindexes 6-43

Object ID on data pages 3-3
Object storage 3-1 to 3-21
Offset table 4-14

nonclustered index selects and 4-17
row IDs and 4-13

size of 3-3
Online backups 18-5
Online transaction processing (OLTP)

applications
named data caches for 15-13
tuning levels 1-3

open command
memory and 12-5

Operating systems
monitoring Server CPU usage 19-9
outstanding I/O limit 19-69

Operators
non-equality, in search

arguments 7-10
in search arguments 7-10

Optimization
cursors 12-5
dbcc traceon(302) and 9-14
in keyword and 7-22
subquery processing order 7-32

Optimizer 7-2 to 7-43
aggregates and 7-25
cache strategies and 15-16
diagnosing problems of 7-1
dropping indexes not used by 6-40
expression subqueries 7-28
I/O estimates 9-16
index statistics and 6-38
join order 7-19
join selectivity 9-24
non-unique entries and 6-3
or clauses and 7-22
overriding 9-1
page and row count accuracy 9-19
procedure parameters and 10-2
quantified predicate subqueries 7-27
query plan output 8-2
search argument additions for 7-12
sources of problems 7-1
subqueries and 7-26
subquery short-circuiting 7-29
temporary tables and 14-12
understanding 9-14
updates and 7-40

SQL Server Performance and Tuning Guide Index-17

Sybase SQL Server Release 11.0.x

viewing with trace flag 302 9-14
or keyword

locking by 7-24
optimization and 7-22
optimization of join clauses

using 10-4
processing 7-23
scan counts and 6-10
subqueries containing 7-30

OR strategy 7-23
cursors and 12-14

Order
composite indexes and 6-30
data and index storage 4-2
index key values 4-4
joins 7-19
presorted data and index

creation 18-4
recovery of databases 18-6
result sets and performance 3-19
subquery clauses 7-31
tables in a join 7-20, 9-2
tables in a query 7-19
tables in showplan messages 8-5

order by clause
indexes and 4-1
showplan messages for 8-20
worktables for 6-12, 8-21

Outer joins 7-15
Output

dbcc 5-5
optimizer 9-16
saving to files 8-2
showplan 8-1 to 8-50
sp_estspace 6-4
sp_spaceused 5-3
sp_sysmon 19-5

Overflow pages 4-10
key values and 4-10

Overhead
calculation (space allocation) 5-21
clustered indexes and 3-19
CPU yeilds and 19-12
cursors 12-10

datatypes and 6-44
datatypes and performance 6-27
deferred updates 7-37
network packets and 16-4
nonclustered indexes 6-28
pool configuration 15-29
row and page 5-10
sp_sysmon 19-3
space allocation calculation 5-15
variable-length and null

columns 5-12

P
@@pack_received global variable 16-6
@@pack_sent global variable 16-6
@@packet_errors global variable 16-6
Packets

average size 19-75
Packets, network 16-3

average size 19-75
received 19-75
sent 19-75
size, configuring 16-3, 19-21

Page allocation to transaction log 19-32
Page chains

data and index 3-5
index 4-4
overflow pages and 4-10
partitions 13-13
placement 13-1
text or image data 5-27
unpartitioning 13-20

Page locks 11-6
sp_lock report on 11-25
types of 11-7

Page requests (sp_sysmon report) 19-53
Page splits 19-35

data pages 4-7
disk write contention and 19-17
fragmentation and 15-34
index maintenance and 19-36
index pages and 4-9
max_rows_per_page setting and 11-31

Index-18

Sybase SQL Server Release 11.0.x

nonclustered indexes, effect on 4-8
object size and 5-1
performance impact of 4-9
reducing with fillfactor 6-46
retries and 19-39

Page stealing 13-18
page utilization percent configuration

parameter
object size estimation and 5-11

Pages, control (partitioned tables) 13-16
syspartitions and 13-19

Pages, data 3-3 to 3-20
bulk copy and allocations 18-6
calculating number of 5-14
fillfactor effect on 5-24
fillfactor for SMP systems 17-12
linking 3-5
max_rows_per_page and SMP

systems 17-12
prefetch and 9-11
size 3-3
splitting 4-7

Pages, distribution 6-35
matching values on 9-21
nonexistent 9-24
space calculations and 5-24
sysindexes storage 6-43

Pages, global allocation map 3-7
Pages, index

aging in data cache 15-8
calculating number of 5-15
calculating number of non-leaf 5-20
fillfactor effect on 5-24, 6-46
fillfactor for SMP systems 17-12
leaf level 4-14
max_rows_per_page and SMP

systems 17-12
shrinks, sp_sysmon report on 19-39
storage on 4-2

Pages, OAM (Object Allocation
Map) 3-8

aging in data cache 15-8
number of 5-15, 5-21
object size information in 5-2

Pages, overflow 4-10
Pages, transaction log

average writes 19-32
Parameters, procedure

datatypes 10-8
optimization and 10-2
tuning with 9-15

Parentheses ()
in SQL statements xxxviii

Parse and compile time 7-7
Partitions 13-12

bcp (bulk copy utility) and 18-8
configuration parameters for 13-21
cursor behavior with 13-17
page stealing 13-18
segment distribution of 13-18
unpartitioning 13-20

Performance
backups and 18-5
bcp (bulk copy utility) and 18-7
cache hit ratio 15-10
clustered indexes and 3-19
indexes and 6-1
lock contention and 19-18
locking and 11-28
monitoring 19-3
number of indexes and 6-4
number of tables considered by

optimizer 9-7
speed and 19-4
tempdb and 14-1 to 14-14

Phantoms in transactions 11-4
preventing 11-17

Physical device name 13-3
Physical reads (statistics io) 6-12
Point query 3-2
Pointers

index 4-2
last page, for heap tables 3-12
page chain 3-5
text and image page 3-6

Pools, data cache
configuring for operations on heap

tables 3-14

SQL Server Performance and Tuning Guide Index-19

Sybase SQL Server Release 11.0.x

large I/Os and 15-13
overhead 15-29
sp_sysmon report on size 19-57

Ports, multiple 16-13
Positioning showplan messages 8-28
Precision, datatype

size and 5-12
Prefetch

data pages 9-11
disabling 9-11
enabling 9-12
performance ideal 15-30
queries 9-10
sequential 3-14

prefetch keyword
I/O size and 9-10

primary key constraint
index created by 6-6

Primary keys
normalization and 2-5
splitting tables and 2-14

“proc buffers” 15-5
“proc headers” 15-6
Procedure cache 15-4

cache hit ratio 15-6
errors 15-7
management with sp_sysmon 19-61
optimized plans in 9-24
query plans in 15-4
size report 15-5
sizing 15-6

procedure cache percent configuration
parameter 15-3

Processes
CPUs and 19-8

Profile, transaction 19-22

Q
q_score_index() routine 9-16

tables not listed by 9-24
Quantified predicate subqueries

aggregates in 7-29
optimization of 7-27

showplan messages for 8-44
Queries

execution settings 8-1
point 3-2
range 6-3
showplan setting 6-6
specifying I/O size 9-9
specifying index for 9-7
unindexed columns in 3-2

Query analysis
dbcc traceon (302) 9-14
set noexec 6-6
set statistics io 6-8
set statistics time 6-6
showplan and 8-2 to 8-50
sp_cachestrategy 9-14
tools for 6-1 to 6-46

Query plans
cursors 12-5
optimizer and 7-2
procedure cache storage 15-4
stored procedures 9-24
sub-optimal 9-8
triggers 9-24
unused and procedure cache 15-4
updatable cursors and 12-14

Query processing
large I/O for 15-13
steps in 7-3

R
Range queries 6-3

large I/O for 9-9
messages from 9-23
optimizer and 9-18

Read-only cursors 12-6
indexes and 12-6
locking and 12-10

Reads
clustered indexes and 4-6
disk 19-71
disk mirroring and 13-8
image values 3-6

Index-20

Sybase SQL Server Release 11.0.x

named data caches and 15-30
nonrepeatable, preventing 11-17
partitioning to improve

performance 13-15
statistics for 6-12
text values 3-6

Recompilation
cache binding and 15-30
testing optimization and 9-15

Recovery
housekeeper task and 17-10
index creation and 18-4
partitions and 13-14
sp_sysmon report on 19-63

recovery interval in minutes configuration
parameter 15-8, 15-34

I/O and 18-6
Re-creating

indexes 18-4
Referential integrity

references and unique index
requirements 6-27

showplan messages and 8-6
update operations and 7-33
updates using 7-37

Reformatting 7-14
showplan messages for 8-33

Releasing locks 11-16
Remote backups 18-5
Replacement strategy. See MRU

replacement strategy; LRU
replacement strategy

Replication
network activity from 16-9
tuning levels and 1-4
update operations and 7-33

Reports
cache strategy 9-14
optimizer 9-16
procedure cache size 15-5
sp_estspace 5-8

Reserved pages, sp_spaceused report
on 5-4

Response time

CPU utilization and 19-10
definition of 1-1
other users affecting 16-10
sp_sysmon report on 19-7
table scans and 3-1

Retries, page splits and 19-39
Risks of denormalization 2-8
Roll back processes

cache sizing and 15-18
Root level of indexes 4-3
Rounding

object size calculation and 5-10
Row ID (RID) 4-13, 19-35

offset table 4-14
update operations and 7-33
updates from clustered split 19-35
updates, index maintenance

and 19-35
Row offset number 4-13
Rows, index

max_rows_per_page and 11-30
size of leaf 5-19
size of non-leaf 5-20

Rows, table
density 3-4
max_rows_per_page and 11-30
number of 5-26
splitting 2-15

Run queue 19-19

S
Sample interval, sp_sysmon 19-8
Scanning, in showplan messages 8-29
Scans, number of (statistics io) 6-9
Scans, table

avoiding 4-1
costs of 6-15
large I/O for 15-13
performance issues 3-1
showplan message for 8-28

Search arguments 7-8
adding 7-12
equivalents in 7-10

SQL Server Performance and Tuning Guide Index-21

Sybase SQL Server Release 11.0.x

optimizer and 9-21
optimizing 9-15
where clauses and 7-9

Search conditions
clustered indexes and 6-25
locking 11-7

Searches skipped, sp_sysmon report
on 19-45

Second normal form 2-5
See also Normalization

Segments 13-3, 13-9
clustered indexes on 13-10
database object placement on 13-4,

13-10
nonclustered indexes on 13-10
partition distribution over 13-18
partitions and 13-14
tempdb 14-8

select * command
logging of 14-11

select command
locks created by 11-21
optimizing 6-3
specifying index 9-7

select into command
heap tables and 3-12
large I/O for 15-13

Select operations
clustered indexes and 4-5
heaps 3-11
nonclustered indexes 4-17

Selectivity, optimizer 9-24
Semaphores 19-30, 19-71

log contention 19-18
user log cache requests 19-30

Sequential prefetch 3-14, 15-13
Server config limit, in sp_sysmon

report 19-69
Servers

monitoring performance 19-3
uniprocessor and SMP 17-11

set command
noexec and statistics io interaction 7-7
showplan 8-1 to 8-50

statistics time 7-7 to 7-8, 8-1
subquery cache statistics 7-31

Set theory operations
compared to row-oriented

programming 12-2
shared keyword

cursors and 11-19, 12-6
locking and 11-19

Shared locks
cursors and 11-19
holdlock keyword 11-15
intent deadlocks 19-44
page 11-7
page deadlocks 19-44
read-only cursors 12-6
sp_lock report on 11-25
table 11-8
table deadlocks 19-44

Short-circuiting subqueries 7-29
showplan option, set 8-1 to 8-50

access methods 8-23
caching strategies 8-23
clustered indexes and 8-26
compared to trace flag 302 9-14
messages 8-2
noexec and 8-1
query clauses 8-13
sorting messages 8-22
subquery messages 8-36
update modes and 8-9
using 8-2

Size
cursor query plans 12-5
data pages 3-3
datatypes with precisions 5-12
formulas for tables or indexes 5-10 to

5-27
I/O 3-14
I/O, reported by showplan 8-35
nonclustered and clustered

index 4-14
object (sp_spaceused) 5-3
predicting tables and indexes 5-12 to

5-27

Index-22

Sybase SQL Server Release 11.0.x

procedure cache 15-5, 15-6
sp_spaceused estimation 5-8
stored procedure 15-6
table estimate by dbcc trace flags 9-17
tempdb database 14-3, 14-5
transaction log 19-32
triggers 15-6
views 15-6

Sleeping CPU 19-12
Sleeping locks 11-25
Slow queries 7-1
SMP (symmetric multiprocessing)

systems
application design in 17-11
CPU use in 17-5
disk management in 17-12
fillfactor for 17-12
log semaphore contention 19-18
max_rows_per_page for 17-12
named data caches for 15-19
sysindexes access and 19-21
temporary tables and 17-13
transaction length 17-12

Sort operations (order by)
improving performance of 18-2
indexing to avoid 4-1
nonclustered indexes and 6-23
performance problems 14-1
showplan messages for 8-28
without indexes 6-21

Sort order
ascending 6-22
descending 6-22
rebuilding indexes after

changing 6-41
sort page count configuration

parameter 18-4
Sorted data, reindexing 6-42
sorted_data option, create index 18-4
Sources of optimization problems 7-1
sp_configure system procedure

lock limits and 11-34
sp_dropglockpromote system

procedure 11-12

sp_estspace system procedure
advantages of 5-9
disadvantages of 5-10
planning future growth with 5-8

sp_lock system procedure 11-25
sp_logiosize system procedure 15-26
sp_monitor system procedure

sp_sysmon interaction 19-1
sp_setpglockpromote system

procedure 11-11
sp_spaceused system procedure 5-2, 5-3

accuracy and dbcc 5-7
row total estimate reported 5-3

sp_sysmon system procedure 19-1 to
19-76

transaction management and 19-27
sp_who system procedure

blocking process 11-25
Space

clustered compared to nonclustered
indexes 4-14

estimating table/index size 5-12 to
5-27

extents 3-4
freeing with truncate table 15-33
reclaiming 3-20
for text or image storage 3-7
unused 3-5

Space allocation
clustered index creation 6-6
contiguous 3-5
dbcc commands for checking 5-5
deallocation of index pages 4-13
deletes and 3-13
extents 3-4
index page splits 4-9
monotonically increasing key values

and 4-9
Object Allocation Map (OAM) 5-15
overhead calculation 5-15, 5-21
page splits and 4-7
predicting tables and indexes 5-12 to

5-27
procedure cache 15-6

SQL Server Performance and Tuning Guide Index-23

Sybase SQL Server Release 11.0.x

sp_spaceused 5-4, 5-8
tempdb 14-9
unused space within 3-5

Speed (Server)
cheap direct updates 7-34
deferred index deletes 7-40
deferred updates 7-37
direct updates 7-33
existence tests 10-1
expensive direct updates 7-35
in-place updates 7-33
memory compared to disk 15-1
select into 14-10
slow queries 7-1
sort operations 18-2
updates 7-32

Spinlocks
contention 15-19, 19-54
data caches and 15-12

Splitting
data cache 15-12
data pages on inserts 4-7
horizontal 2-14
procedures for optimization 10-3
tables 2-14
vertical 2-15

SQL standards
concurrency problems 11-34
cursors and 12-2

Square brackets []
in SQL statements xxxviii

Statistics
cache hits 19-51, 19-55
deadlocks 19-42, 19-44
index 9-20
index add levels 19-39
index distribution page 6-35
index maintenance 19-33
index maintenance and deletes 19-35
large I/O 19-52
lock 19-42
locks 19-40
page shrinks 19-39
recovery management 19-63

spinlock 19-54
subquery cache usage 7-31
transactions 19-24

statistics subquerycache option, set 7-31
statistics time option, set 8-1
Steps

deferred updates 7-37
direct updates 7-33
distribution table 6-39
index 9-21
key values in distribution table 6-35
problem analysis 1-7
query plans 8-3
trace output for 9-21
update statistics and 9-22
values between 9-22

Storage management
collapsed tables effect on 2-12
delete operations and 3-13
I/O contention avoidance 13-4
page proximity 3-5
row density and 3-4
row storage 3-3
space deallocation and 4-11

Stored procedures
cursors within 12-8
network traffic reduction with 16-7
optimization 10-2
performance and 13-2
query plans for 9-24
size estimation 15-6
sp_sysmon report on reads 19-62
sp_sysmon report on requests 19-62
sp_sysmon report on writes 19-62
splitting 10-3
temporary tables and 14-13

Stress tests, sp_sysmon and 19-4
Striping tempdb 14-3
Subqueries

any, optimization of 7-27
attachment 7-32
exists, optimization of 7-27
expression, optimization of 7-28
flattening 7-27

Index-24

Sybase SQL Server Release 11.0.x

in, optimization of 7-27
materialization and 7-28
optimization 7-26
quantified predicate, optimization

of 7-27
results caching 7-31
short-circuiting 7-29
showplan messages for 8-36 to 8-50

sybsecurity database
audit queue and 15-36
placement 13-6

Symptoms of optimization
problems 7-1

Synonyms
search arguments 7-10

Syntax conventions,
Transact-SQL xxxviii to xl

sysindexes table
index information in 6-42
locking 19-21
named cache for 15-19
sp_spaceused and 5-5
text objects listed in 3-7

sysprocedures table
query plans in 15-4

System log record, ULC flushes and (in
sp_sysmon report) 19-29

System tables
performance and 13-2

T
table count option, set 9-7
Table locks 11-6, 19-46

controlling 11-9
sp_lock report on 11-25
types of 11-8

Table scans
avoiding 4-1
cache flushing and 6-14
evaluating costs of 6-15
forcing 9-8
large I/O for 15-13
optimizer choosing 9-25

performance issues 3-1
row size effect on 3-4
showplan messages for 8-24

tablealloc option, dbcc
object size report 5-5

Tables
See also Heap tables; Table locks; Table

scans; Temporary tables
collapsing 2-12
denormalizing by splitting 2-14
designing 2-3
duplicating 2-13
estimating size of 5-10 to 5-27
heap 3-10 to 3-21
locks held on 11-9, 11-25
normal in tempdb 14-3
normalization 2-3
partitioning 13-15
secondary 6-44
size with a clustered index 5-12 to

5-15
unpartitioning 13-20

Tabular Data Stream (TDS)
protocol 16-3

network packets and 19-21
packets received 19-75
packets sent 19-75

Task context switches 19-16
Tasks

sleeping 19-19
Technical Support xli
tempdb database

data caches 14-9
logging in 14-10
named caches and 15-13
performance and 14-1 to 14-14
placement 13-5, 14-7
segments 14-8
size of 14-5
in SMP environment 17-13
space allocation 14-9
striping 14-3

Temporary tables
denormalization and 14-5

SQL Server Performance and Tuning Guide Index-25

Sybase SQL Server Release 11.0.x

indexing 14-13
locking 11-6
nesting procedures and 14-14
normalization and 14-5
optimizing 14-11
performance considerations 13-2,

14-2
permanent 14-3
SMP systems 17-13

Testing
caching and 6-13
data cache performance 15-10
“hot spots” 6-26
index forcing 9-8
nonclustered indexes 6-28
performance monitoring and 19-4
statistics io and 6-12

text datatype
chain of text pages 5-27
large I/O for 15-13
page number estimation 5-26 to 5-27
page size for storage 3-7
partitioning and 13-16
storage on separate device 3-6, 13-11
sysindexes table and 3-7

Third normal form. See Normalization
Thresholds

bulk copy and 18-7
database dumps and 18-5
transaction log dumps and 13-6

Throughput 1-1
adding engines and 19-11
CPU utilization and 19-10
group commit sleeps and 19-19
log I/O size and 19-19
monitoring 19-7
pool turnover and 19-57

Time interval
deadlock checking 11-27
recovery 15-35
since sp_monitor last run 17-4
sp_sysmon 19-2

Tools
index information 6-7

packet monitoring with
sp_monitor 16-6

query analysis 6-6
Total cache hits in sp_sysmon

report 19-51
Total cache misses in sp_sysmon report

on 19-51
Total cache searches in sp_sysmon

report 19-51
Total disk I/O checks in sp_sysmon

report 19-13
Total lock requests in sp_sysmon

report 19-42
total memory configuration

parameter 15-2
Total network I/O checks in sp_sysmon

report 19-12
Trace flag 302 9-14 to 9-26
transaction isolation level option, set 11-14
Transaction logs

average writes 19-32
contention 19-18
last page writes 19-20
log I/O size and 15-25
named cache binding 15-13
page allocations 19-32
placing on separate segment 13-6
on same device 13-7
storage as heap 3-20
task switching and 19-19
update operation and 7-33
writes 19-32

Transactions
close on endtran option 11-19
committed 19-23
deadlock resolution 11-26
default isolation level 11-14
locking 11-2
log records 19-28, 19-30
logging and 14-10
management 19-27
monitoring 19-7
multidatabase 19-24, 19-29
performance and 19-7

Index-26

Sybase SQL Server Release 11.0.x

profile (sp_sysmon report) 19-22
SMP systems 17-12
statistics 19-24

Triggers
managing denormalized data

with 2-17
procedure cache and 15-4
query plans for 9-24
showplan messages for 8-35
size estimation 15-6
update operations and 7-33

TRUE, return values of 7-27
truncate table command

distribution pages and 9-24
not allowed on partitioned

tables 13-16
tsequal system function

compared to holdlock 11-34
Tuning

advanced techniques for 9-1 to 9-26
definition of 1-2
levels 1-2 to 1-6
monitoring performance 19-3
range queries 9-8
recovery interval 15-35
trace flag 302 for 9-15 to 9-26

Turnover, pools (sp_sysmon report
on) 19-56

Turnover, total (sp_sysmon report
on) 19-58

Two Phase Commit Probe Process
network activity from 16-9

U
ULC. See User Log Cache (ULC)
union operator

cursors and 12-14
optimization of joins using 10-4
subquery cache numbering and 7-32

Unique constraints
index created by 6-6

Unique indexes 4-1
optimizer choosing 9-20

optimizing 6-27
update modes and 7-41

Units, allocation 3-8
Unknown values, optimizing 9-23
Unpartitioning tables 13-20
Unused space

allocations and 3-5
update command

image data and 5-27
locks created by 11-21
text data and 5-27
transaction isolation levels and 11-4

Update cursors 12-6
Update locks 11-7

cursors and 12-6
deadlocks and 11-27
sp_lock report on 11-25

Update modes
indexing and 7-41

Update operations 7-32
checking types 19-26
heap tables and 3-13
index maintenance and 19-34
index updates and 6-28
scan counts and 6-11
statistics 19-26

Update page deadlocks, sp_sysmon
report on 19-44

update statistics command
distribution pages and 6-35
large I/O for 15-13
steps and 9-22

Updates
cheap direct 7-34
deferred 7-37
deferred index 7-38
expensive direct 7-35, 7-36
“hot spots” 11-30
in place 7-33
optimizing 7-40

User connections
application design and 19-15
network packets and 16-4
sp_sysmon report on 19-15

SQL Server Performance and Tuning Guide Index-27

Sybase SQL Server Release 11.0.x

User log cache 15-25
log records 19-28, 19-30
log semaphore contention and 19-18
maximum size 19-30
semaphore requests 19-30

user log cache size configuration
parameter 19-30

increasing 19-29
Utilization

cache 19-54
engines 19-9
kernel 19-8

V
Values

unknown, optimizing 9-23, 10-3
Variable-length columns

index overhead and 6-44
row density and 3-4

Variables
optimizer and 9-23, 10-2

Vertical table splitting 2-15
Views

collapsing tables and 2-13
size estimation 15-6

W
Wash area 15-8

configuring 15-29
Wash marker 3-15
where clause

creating indexes for 6-25
evaluating 9-17
optimizing 9-15
search arguments and 7-9
table scans and 3-11

Worktables
distinct and 8-20
locking and 14-10
or clauses and 7-23
order by and 8-21
reads and writes on 6-13

reformatting and 7-17
showplan messages for 8-14
statistics for I/O 6-12
tempdb and 14-3

Write operations
contention 19-17
disk 19-71
disk mirroring and 13-8
free 17-9
housekeeper process and 17-10
image values 3-6
serial mode of disk mirroring 13-9
statistics for 6-12
text values 3-6
transaction log 19-32

Y
Yields, CPU (sp_sysmon report on) 19-11

Index-28

Sybase SQL Server Release 11.0.x

